Skip to content

Instantly share code, notes, and snippets.

@curlup
Forked from amorton/query_profile.py
Created October 5, 2015 10:44
Show Gist options
  • Save curlup/f592998e4896fd1b964b to your computer and use it in GitHub Desktop.
Save curlup/f592998e4896fd1b964b to your computer and use it in GitHub Desktop.
Tool for profiling Cassandra query performance.
"""Tool for profiling Cassandra query performance.
Tests are run by profile() multiple times and the 'Read Latency' is
extracted using node tool.
Usage:
#Create the schema using the cassandra-cli.
create keyspace query
with strategy_options=[{replication_factor:1}]
and placement_strategy = 'org.apache.cassandra.locator.SimpleStrategy';
use query;
create column family NoCache
with comparator = AsciiType
and default_validation_class = AsciiType
and key_validation_class = AsciiType
and keys_cached = 0
and rows_cached = 0;
#Load data
$python query_profile.py insert_rows
#Warm up the database
$python query_profile.py warm_up
#Test the name locality for query by column name
$python query_profile.py name_locality
#Test the start position for query by range
$python query_profile.py start_position
"""
import math
import multiprocessing
import operator
import os
import os.path
import random
import re
import shlex
import subprocess
import sys
import time
import pycassa
rows = [
("small-row", 100), # 100 columns, 5K of data
("no-col-index", 1200), # 1200 columns, 60K of data
("five-thousand", 5000), # 5000 columns, 244K of data
("ten-thousand", 10000), # 10000 columns, 488K of data
("hundred-thousand", 100000), # 100000 columns, 4.8M of data
("one-million", 1000000), # 1000000 columns, 48M of data
("ten-million", 10000000) # 10000000 columns, 480M of data
]
CASSANDRA_PATH = "/Users/aaron/frameworks/cassandra/apache-cassandra-0.8.1/bin/"
CASS_POOL = pycassa.connect("query", ["localhost"])
NOCACHE = pycassa.columnfamily.ColumnFamily(CASS_POOL, "NoCache")
col_pattern = "{0:0>#10}"
profile_pattern = "Row {0:>20} latency in ms "\
"{1:>10.4} {2:>10.4} {3:>10.4} {4:>10.4}"
def make_cols(cols):
"""Make the column names"""
return [col_pattern.format(i) for i in xrange(cols)]
def make_paged_cols(cols, shuffle=True):
"""Split the cols into pages about the size as a column index page
1310 * 50B = 63.9K
:param shuffle: Shuffle the pages
:returns: List of lists.
"""
all_cols = make_cols(cols)
pages_start = range(0, cols, 1310)
pages_end = pages_start[1:] + [cols]
pages = [
operator.getslice(all_cols, start, end)
for start, end in zip(pages_start, pages_end)
]
if shuffle:
random.shuffle(pages)
return pages
def col_range(start, cols, count):
"""A range of columns from the start or end of the column list.
:returns: list of column names.
"""
all_cols = make_cols(cols)
return all_cols[:count] if start else all_cols[-count:]
def range_paged_cols(start, cols, range, shuffle_pages=False,
shuffle_columns=False, collapse=True):
"""select a range from the start or end of each page of columns
:returns: list of columns if collapse, else list of list of columns.
"""
result = []
for page in make_paged_cols(cols, shuffle=shuffle_pages):
if shuffle_columns:
random.shuffle(page)
if collapse:
result.extend(page[:range] if start else page[-range:])
else:
result.append(page[:range] if start else page[-range:])
return result
def start_col(cols, offset, page_offset=None):
"""A single column name at the offset from the start of the row.
:returns: str column name
"""
if page_offset is None:
all_cols = make_cols(cols)
else:
all_cols = make_paged_cols(cols, shuffle=False)
all_cols = all_cols[min(page_offset, len(all_cols)-1)]
return all_cols[offset]
# ========================
# Testing functions
def run(cmd):
"""Execute the command line"""
p = subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
return p.communicate()
def percentile(N, percent, key=lambda x:x):
"""
from http://code.activestate.com/recipes/511478/ (r1)
Find the percentile of a list of values.
@parameter N - is a list of values. Note N MUST BE already sorted.
@parameter percent - a float value from 0.0 to 1.0.
@parameter key - optional key function to compute value from each element of N.
@return - the percentile of the values
"""
if not N:
return None
k = (len(N)-1) * percent
f = math.floor(k)
c = math.ceil(k)
if f == c:
return key(N[int(k)])
d0 = key(N[int(f)]) * (k-f)
d1 = key(N[int(c)]) * (c-k)
return d0+d1
def profile(target, repeat=10):
"""Clears the recent latency stats, runs the target and then gets the
latency stats again.
"""
global rows
nodetool_path = os.path.join(CASSANDRA_PATH, "nodetool")
cmd = nodetool_path + " -h localhost cfstats"
print "Latency is min, 80th percentile, 95th percentile and max."
print target.__doc__
print
for key, cols in rows:
latency = []
low_col_warn = False
for i in range(repeat):
run(cmd)
rv = target(key, cols)
std_out, std_err = run(cmd)
if std_err:
raise RuntimeError(std_err)
if len(rv) < 100 and not low_col_warn:
print "WARN: only %s columns returned" % len(rv)
low_col_warn = True
this_latency = _parse_latency(std_out)
if this_latency is not None:
latency.append(this_latency)
latency.sort()
stats = (
min(latency),
percentile(latency, 0.8),
percentile(latency, 0.95),
max(latency)
)
print profile_pattern.format(key, *stats)
print
return
def _parse_latency(data):
"""Parse the nodetool std out to get the recent read latency for the CF.
"""
found_cf = False
for line in data.split("\n"):
line = line.strip()
if not found_cf:
found_cf = line.startswith("Column Family: NoCache")
continue
if found_cf:
token = re.findall("Read Latency: (?P<foo>\S*)", line)
if not token:
continue
return (float(token[0]))
return None
def start_position():
"""Test different start column offsets."""
print "Test start position..."
print
def test1(key, cols):
"""100 columns from with no start column"""
return NOCACHE.get(key, column_count=100)
profile(test1)
def test2(key, cols):
"""100 columns from the start of the row with a start col"""
x = start_col(cols, 0)
return NOCACHE.get(key, column_start=x, column_count=100)
profile(test2)
def test3(key, cols):
"""100 columns from the start of the second page"""
x = start_col(cols, 0, page_offset=1)
return NOCACHE.get(key, column_start=x, column_count=100)
profile(test3)
def test4(key, cols):
"""100 columns starting half way through the row"""
x = start_col(cols, (cols / 2))
return NOCACHE.get(key, column_start=x, column_count=100)
profile(test4)
def test5(key, cols):
"""100 columns starting from the last page """
x = start_col(cols, 0, page_offset=-1)
return NOCACHE.get(key, column_start=x, column_count=100)
profile(test5)
def name_locality():
"""Test difference between tightly clustered columns and spread out
columns."""
print "Test name locality..."
print
def test1(key, cols):
"""100 columns by name, start of the row."""
x = col_range(True, cols, 100)
return NOCACHE.get(key, columns=x)
profile(test1)
def test2(key, cols):
"""100 columns by name, end of the row."""
x = col_range(False, cols, 100)
return NOCACHE.get(key, columns=x)
profile(test2)
def test3(key, cols):
"""100 columns by name, middle of row."""
x = range_paged_cols(True, cols, 100, collapse=False)
#Got a list of lists, inner list is columns from a page.
#Pick the middle page
x = x[int(len(x)/2.0)]
return NOCACHE.get(key, columns=x)
profile(test3)
def test4(key, cols):
"""100 columns by name, first 2 cols from 50 random pages"""
x = range_paged_cols(True, cols, 2, shuffle_pages=True)
return NOCACHE.get(key, columns=x[:100])
profile(test4)
def test5(key, cols):
"""100 columns by name, last 2 cols from 50 random pages"""
x = range_paged_cols(False, cols, 2,shuffle_pages=True)
return NOCACHE.get(key, columns=x[:100])
profile(test5)
def test6(key, cols):
"""100 columns by name, random 2 cols from 50 random pages"""
x = range_paged_cols(False, cols, 2,shuffle_pages=True,
shuffle_columns=True)
return NOCACHE.get(key, columns=x[:100])
profile(test6)
def test7(key, cols):
"""100 columns by name, first col from 100 random pages"""
x = range_paged_cols(True, cols, 1,shuffle_pages=True)
return NOCACHE.get(key, columns=x[:100])
profile(test7)
def test8(key, cols):
"""100 columns by name, last col from 100 random pages"""
x = range_paged_cols(False, cols, 1,shuffle_pages=True, )
return NOCACHE.get(key, columns=x[:100])
profile(test8)
def test9(key, cols):
"""100 columns by name, random col from 100 random pages"""
x = range_paged_cols(False, cols, 1,shuffle_pages=True,
shuffle_columns=True)
return NOCACHE.get(key, columns=x[:100])
profile(test9)
def warm_up():
"""Scan through all of the keys in each row to warm the server"""
global rows
class Walk(multiprocessing.Process):
def __init__(self, row_key):
super(Walk, self).__init__()
self.row_key = row_key
conn = pycassa.connect("query", ["localhost"])
self.cf = pycassa.columnfamily.ColumnFamily(conn, "NoCache")
def run(self):
start_col = ""
while start_col is not None:
cols = self.cf.get(self.row_key, column_start=start_col,
column_count=1000)
start_col, _ = cols.popitem(last=True) if len(cols) > 1 else (
None, None)
threads = [Walk(key) for key, cols in rows]
print "Starting %s processes..." % len(rows)
start = time.time()
map(Walk.start, threads)
alive = lambda: (t for t in threads if t.is_alive())
while (any(alive())):
time.sleep(1)
if int(time.time() - start) % 5 == 0:
print "Alive count ", len(list(alive()))
print "Finish in ", time.time() - start
return
def insert_rows():
"""Insert rows into the DB for testing"""
global rows
class Insert(multiprocessing.Process):
def __init__(self, row_key, cols):
super(Insert, self).__init__()
self.row_key = row_key
self.cols = cols
self.conn = pycassa.connect("query", ["localhost"])
self.cf = pycassa.columnfamily.ColumnFamily(self.conn, "NoCache")
def run(self):
#automatic send every 100 cols
mutator = pycassa.batch.Mutator(self.conn, queue_size=100)
data = ("foo" * 10)[:25]
for i in xrange(self.cols):
mutator.insert(NOCACHE, self.row_key,
{col_pattern.format(i) : data})
mutator.send()
return
threads = [Insert(key, cols) for key, cols in rows]
print "Starting %s processes..." % len(rows)
start = time.time()
map(Insert.start, threads)
alive = lambda: (t for t in threads if t.is_alive())
while (any(alive())):
time.sleep(1)
if int(time.time() - start) % 5 == 0:
print "Alive count ", len(list(alive()))
print "Finish in ", time.time() - start
return
if __name__ == "__main__":
action = sys.argv[1] if len(sys.argv) > 1 else None
args = [
token
for token in sys.argv[2:]
if token.find("=") < 0
]
kwargs = dict(
token.split("=")
for token in sys.argv[2:]
if token.find("=") > 0
)
func = globals().get(action)
if func:
func(*args, **kwargs)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment