Created
December 13, 2014 04:25
-
-
Save cutewalker/e2f1c90e12a2136a89b0 to your computer and use it in GitHub Desktop.
find all solutions of n-order magic square
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
find all solutions of n-order magic square | |
""" | |
import itertools | |
class Solver(object): | |
def __init__(self, n, square=None, magic_sum=None): | |
assert n > 0 | |
self.order = n | |
self.order_square = n*n | |
self.max_num = n*n | |
self.magic_sum = n * (n*n + 1)/2 | |
if magic_sum: | |
assert magic_sum >= self.magic_sum | |
self.max_num = magic_sum - 3 | |
self.magic_sum = magic_sum | |
self.remains = set(range(1, self.max_num+1)) | |
if square: | |
assert len(square) == n | |
assert map(len, square) == [n] * n | |
self.square = square | |
self.remains -= set(a for a in itertools.chain(*self.square) if a > 0) | |
else: | |
self.square = [] | |
for x in xrange(n): | |
self.square.append([0] * n) | |
print self.order | |
print self.max_num, self.magic_sum | |
print self.remains | |
print self.square | |
print '---' | |
self.s_count = 0 | |
def _push(self, i, j, v): | |
assert v in self.remains | |
self.square[i][j] = v | |
self.remains.remove(v) | |
def _pop(self, i, j): | |
v = self.square[i][j] | |
assert v and v not in self.remains | |
self.remains.add(v) | |
self.square[i][j] = 0 | |
def _pos2ij(self, pos): | |
return pos / self.order, pos % self.order | |
def _is_ok(self, i, j): | |
if j == self.order-1: | |
if sum(self.square[i]) != self.magic_sum: | |
return False | |
if i == self.order-1: | |
s = 0 | |
for ii in xrange(self.order): | |
s += self.square[ii][j] | |
if s != self.magic_sum: | |
return False | |
if i == self.order-1 and j == self.order-1: | |
s = 0 | |
for ii in xrange(self.order): | |
s += self.square[ii][ii] | |
if s != self.magic_sum: | |
return False | |
if i == self.order-1 and j == 0: | |
s = 0 | |
for ii in xrange(self.order): | |
s += self.square[ii][self.order-1-ii] | |
if s != self.magic_sum: | |
return False | |
return True | |
def run(self, pos=0): | |
if pos >= self.order_square: | |
self.s_count +=1 | |
print '--Bingo!~', self.s_count, self.square | |
return | |
i, j = self._pos2ij(pos) | |
if self.square[i][j] > 0: | |
self.run(pos+1) | |
return | |
for v in list(self.remains): | |
self._push(i, j, v) | |
if self._is_ok(i, j): | |
self.run(pos+1) | |
self._pop(i, j) | |
if __name__ == '__main__': | |
#s = Solver(1) | |
#s = Solver(1, max_num=100, magic_sum=100) | |
#s = Solver(2) | |
#s = Solver(2, max_num=100, magic_sum=150) | |
#square = [[0, 0, 0], [9, 0, 0], [0, 0, 0]] | |
#s = Solver(3, square) | |
#s = Solver(3, magic_sum=23) # solutions: 0 | |
#s = Solver(3, magic_sum=18) # solutions: 24 | |
#s = Solver(3, magic_sum=34) # solutions: 0 | |
#s = Solver(3, magic_sum=20) # solutions: 0 | |
#square = [ [2, 3, 0, 0], [4, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0] ] | |
#s = Solver(4, square) | |
s = Solver(4) | |
s.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment