Last active
August 29, 2015 13:57
-
-
Save cwidmer/9676560 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
snippet to time different indexing strategies | |
based on: | |
http://wesmckinney.com/blog/?p=215 | |
http://stackoverflow.com/questions/11800075/faster-numpy-fancy-indexing-and-reduction/11813040#11813040 | |
http://stackoverflow.com/questions/14386822/fast-numpy-fancy-indexing?rq=1 | |
""" | |
import numpy as np | |
import random | |
indexer = np.arange(5000) | |
random.shuffle(indexer) | |
arr = np.array(np.random.randn(10000, 10000), order="F") | |
%timeit arr[:,indexer] | |
%timeit arr.take(indexer, axis=1) | |
arr = np.array(np.random.randn(10000, 10000), order="C") | |
%timeit arr[:,indexer] | |
%timeit arr.take(indexer, axis=1) | |
""" | |
In [46]: indexer = np.arange(5000) | |
In [47]: random.shuffle(indexer) | |
In [48]: | |
In [48]: arr = np.array(np.random.randn(10000, 10000), order="F") | |
In [49]: %timeit arr[:,indexer] | |
1 loops, best of 3: 1.41 s per loop | |
In [50]: %timeit arr.take(indexer, axis=1) | |
1 loops, best of 3: 2.35 s per loop | |
In [51]: | |
In [51]: arr = np.array(np.random.randn(10000, 10000), order="C") | |
In [52]: %timeit arr[:,indexer] | |
1 loops, best of 3: 3.08 s per loop | |
In [53]: %timeit arr.take(indexer, axis=1) | |
1 loops, best of 3: 438 ms per loop | |
""" | |
# verdict: use C-order with take |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment