Skip to content

Instantly share code, notes, and snippets.

@cwindolf
Last active June 24, 2021 16:53
Show Gist options
  • Save cwindolf/15d4d0d8c744c8de030474cb7e1cbf75 to your computer and use it in GitHub Desktop.
Save cwindolf/15d4d0d8c744c8de030474cb7e1cbf75 to your computer and use it in GitHub Desktop.
Optionally FFT-based normalized cross-correlation in Python / NumPy
# Translation of the Octave implementation (GPL), which is
# copyright 2014 Benjamin Eltzner. For that code, and license, see:
# hg.code.sf.net/p/octave/image/file/tip/inst/normxcorr2.m
import numpy as np
from scipy.signal import correlate, convolve
def normxcorr(template, x, mode="full", method="auto", assume_centered=False):
"""normxcorr: Normalized cross-correlation
Returns the cross-correlation of `template` and `x` at spatial lags
determined by `mode`. Useful for estimating the location of `template`
within `x`.
Arguments
---------
template, x : np.array
Must have same dimensionality.
mode : one of "full", "valid", "same"
method : one of "auto", "direct", "fft"
For docs of these parameters, see scipy.signal.correlate.
assume_centered : bool
Avoid a copy if your data is centered already.
Returns
-------
corr : np.array
Array of same dimensionality as `template` and `x` containing
the subset of normalized cross-correlations corresponding
to the `mode`.
"""
template = np.asarray(template)
x = np.asarray(x)
assert template.ndim == x.ndim
if not assume_centered:
template = template - template.mean()
x = x - x.mean()
a1 = np.ones_like(template)
corr = correlate(x, template, mode=mode, method=method)
bb_a1 = convolve(np.square(x), a1, mode=mode, method=method)
b_a1 = convolve(x, a1, mode=mode, method=method)
x = bb_a1 - np.square(b_a1) / template.size
x[x < 0] = 0
corr /= np.sqrt(x * np.square(template).sum())
corr[~np.isfinite(corr)] = 0
return corr
import numpy as np
from scipy.signal import correlation_lags
from normxcorr import normxcorr
rg = np.random.default_rng(0)
# -- 2D test example with pad mode SAME
# odd-sized 2D test image
D = 101
a = rg.standard_normal((D, D))
a1 = np.ones_like(a)
a_lags0 = correlation_lags(a.shape[0], a.shape[0], mode="same")
a_lags1 = correlation_lags(a.shape[1], a.shape[1], mode="same")
c_aa = normxcorr(a, a, mode="same")
# check mode SAME working
assert(c_aa.shape == a.shape)
# correlations are finite and not NaN
assert(np.isfinite(c_aa).all())
# correlations are <= 1
# could be violated by machine precision
assert((np.abs(c_aa) <= 1).all())
# correlation at 0 lag is 1
assert(np.isclose(c_aa[D // 2, D // 2], 1.0))
# max correlation happens at 0 lag (whp)
l0, l1 = np.unravel_index(c_aa.argmax(), a.shape)
assert(a_lags0[l0] == 0)
assert(a_lags1[l1] == 0)
# -- 2D test example with pad mode FULL
# another odd-sized 2D test image
D = 101
a = rg.standard_normal((D, D))
a1 = np.ones_like(a)
a_lags0 = correlation_lags(a.shape[0], a.shape[0], mode="full")
a_lags1 = correlation_lags(a.shape[1], a.shape[1], mode="full")
c_aa = normxcorr(a, a, mode="full")
# check mode FULL working
c_aa_shape = np.array(c_aa.shape)
a_shape = np.array(a.shape)
assert((c_aa_shape == a_shape + 2 * (D // 2)).all())
c_aa_D = D + 2 * (D // 2)
# correlations are finite and not NaN
assert(np.isfinite(c_aa).all())
# correlations are <= 1
# could be violated by machine precision
assert((np.abs(c_aa) <= 1).all())
# correlation at 0 lag is 1
assert(np.isclose(c_aa[c_aa_D // 2, c_aa_D // 2], 1.0))
# max correlation happens at 0 lag (whp)
l0, l1 = np.unravel_index(c_aa.argmax(), c_aa.shape)
assert(a_lags0[l0] == 0)
assert(a_lags1[l1] == 0)
# -- FFT and direct have same result
# small test image so direct calc is fast
a = rg.standard_normal((11, 11))
c_fft = normxcorr(a, a, mode="same", method="fft")
c_direct = normxcorr(a, a, mode="same", method="direct")
assert(np.isclose(c_fft, c_direct).all())
c_fft = normxcorr(a, a, mode="full", method="fft")
c_direct = normxcorr(a, a, mode="full", method="direct")
assert(np.isclose(c_fft, c_direct).all())
c_fft = normxcorr(a, a, mode="valid", method="fft")
c_direct = normxcorr(a, a, mode="valid", method="direct")
assert(np.isclose(c_fft, c_direct).all())
# -- 1D test example with pad mode SAME
# odd-sized 1D test image
D = 101
a = rg.standard_normal(D)
a1 = np.ones_like(a)
a_lags = correlation_lags(a.shape[0], a.shape[0], mode="same")
c_aa = normxcorr(a, a, mode="same")
# check mode SAME working
assert(c_aa.shape == a.shape)
# correlations are finite and not NaN
assert(np.isfinite(c_aa).all())
# correlations are <= 1
# could be violated by machine precision
assert((np.abs(c_aa) <= 1).all())
# correlation at 0 lag is 1
assert(np.isclose(c_aa[D // 2], 1.0))
# max correlation happens at 0 lag (whp)
assert(a_lags[c_aa.argmax()] == 0)
# -- 4D test example with pad mode SAME
# odd-sized 4D test image
D = 11
a = rg.standard_normal([D] * 4)
a1 = np.ones_like(a)
a_lags = [
correlation_lags(a.shape[i], a.shape[i], mode="same")
for i in range(4)
]
c_aa = normxcorr(a, a, mode="same")
# check mode SAME working
assert(c_aa.shape == a.shape)
# correlations are finite and not NaN
assert(np.isfinite(c_aa).all())
# correlations are <= 1
# could be violated by machine precision
assert((np.abs(c_aa) <= 1).all())
# correlation at 0 lag is 1
assert(np.isclose(c_aa[D // 2, D // 2, D // 2, D // 2], 1.0))
# max correlation happens at 0 lag (whp)
inds = np.unravel_index(c_aa.argmax(), a.shape)
assert(all(lags[ind] == 0 for lags, ind in zip(a_lags, inds)))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment