-
-
Save cwindolf/189a8942c0264970008c128c38f9e889 to your computer and use it in GitHub Desktop.
Python library for whitening and coloring data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Python library for decorrelating and correlating data | |
Forked from joelouismarino/whiten.py. | |
Also based on R's rdrr.io/cran/whitening/src/R/whiteningMatrix.R, | |
and an SAS blog post: | |
blogs.sas.com/content/iml/2012/02/08/use-the-cholesky- | |
transformation-to-correlate-and-uncorrelate-variables.html | |
''' | |
import numpy as np | |
import scipy.linalg as la | |
def whitening_matrix(X, assume_centered=False, method='zca', fudge=1e-8): | |
'''Whitening / decorrelation matrix for a dataset `X` | |
Returns a matrix `W` such that `X @ W.T` has identity (or diagonal in the | |
case that method in ('zca_cor', 'pca_cor')) covariance, assuming | |
that `X` is centered. | |
The matrix square root is not unique, so several methods are provided. | |
- 'pca' computes the PCA matrix. This will sphere the data and map | |
principal directions to the standard basis. | |
- 'zca' - Zero-phase correlation analysis. Like PCA, but without the | |
rotation to the standard basis -- so, directions in the data are | |
preserved. | |
- 'cholesky' | |
Arguments | |
--------- | |
X : np.array | |
Data array with shape (n_samples, n_feature1, ..., n_featurek) | |
assume_centered : boolean | |
If false, center the data. | |
method : string | |
One of zca, pca, cholesky, zca_cor, pca_cor | |
fudge : float | |
Small factor to de-emphasize small eigenvalues. | |
Returns | |
------- | |
W : np.array | |
n_features x n_features matrix, where | |
n_features = n_feature1 * ... * n_featurek | |
''' | |
# Make sure data is n_samples x n_features | |
X = X.reshape((-1, np.prod(X.shape[1:]))) | |
# Center | |
X_centered = X | |
if not assume_centered: | |
X_centered = X - np.mean(X, axis=0) | |
cov = X_centered.T @ X_centered / X_centered.shape[0] | |
if method in ['zca', 'pca']: | |
U, sigma, _ = la.svd(cov) | |
U = U @ np.diag(np.sign(np.diag(U))) # Fix sign ambiguity | |
invsqrt_sigma = np.diag(1.0 / np.sqrt(sigma + fudge)) | |
if method == 'zca': | |
W = U @ invsqrt_sigma @ U.T | |
elif method == 'pca': | |
W = invsqrt_sigma @ U.T | |
elif method == 'cholesky': | |
W = la.cholesky(la.pinv(cov), lower=True) | |
elif method in ['zca_cor', 'pca_cor']: | |
stds = np.sqrt(np.diag(cov)) | |
corr = cov / np.outer(stds, stds) | |
G, theta, _ = la.svd(corr) | |
G = G @ np.diag(np.sign(np.diag(G))) # Fix sign ambiguity | |
invsqrt_theta = np.diag(1.0 / np.sqrt(theta + fudge)) | |
if method == 'zca_cor': | |
W = G @ invsqrt_theta @ G.T @ np.diag(1 / stds) | |
elif method == 'pca_cor': | |
W = invsqrt_theta @ G.T @ np.diag(1 / stds) | |
else: | |
raise ValueError(f'Whitening method {method} not found.') | |
return W | |
def whiten(X, assume_centered=False, method='zca', fudge=1e-8): | |
'''Decorrelate a dataset `X` | |
Arguments | |
--------- | |
X : np.array | |
Dataset with shape (n_samples, n_feature1, ..., n_featurek) | |
assume_centered : boolean | |
If false, center the data. | |
method : string | |
One of zca, pca, cholesky, zca_cor, pca_cor | |
fudge : float | |
Small factor to de-emphasize small eigenvalues. | |
Returns | |
------- | |
Z : an array with the same shape as `X`. | |
''' | |
# Center | |
X_centered = X | |
if not assume_centered: | |
X_centered = X - np.mean(X, axis=0) | |
W = whitening_matrix( | |
X_centered, assume_centered=True, method=method, fudge=fudge | |
) | |
Z = X_centered @ W.T | |
Z = Z.reshape(X.shape) | |
return Z | |
def coloring_matrix(X, assume_centered=False, method='cholesky'): | |
'''Coloring matrix for a dataset `X` | |
Returns a matrix `C` such that `(C @ Z.T).T` or equivalently | |
`Z @ C.T` has the correlation structure of `X`, assuming that `Z` | |
was uncorrelated to start with. | |
Arguments | |
--------- | |
X : np.array | |
Data array with shape (n_samples, n_feature1, ..., n_featurek) | |
assume_centered : boolean | |
If false, center the data. | |
method : string | |
One of zca, pca, cholesky | |
Returns | |
------- | |
C : np.array | |
n_features x n_features matrix, where | |
n_features = n_feature1 * ... * n_featurek | |
''' | |
# Make sure data is n_samples x n_features | |
X = X.reshape((-1, np.prod(X.shape[1:]))) | |
# Center | |
X_centered = X | |
if not assume_centered: | |
X_centered = X - np.mean(X, axis=0) | |
cov = X_centered.T @ X_centered / X_centered.shape[0] | |
if method == 'cholesky': | |
C = la.cholesky(cov, lower=True) | |
elif method in ['zca', 'pca']: | |
U, sigma, _ = la.svd(cov) | |
U = U @ np.diag(np.sign(np.diag(U))) # Fix sign ambiguity | |
sqrt_sigma = np.diag(np.sqrt(sigma)) | |
if method == 'zca': | |
C = U @ sqrt_sigma @ U.T | |
elif method == 'pca': | |
C = U @ sqrt_sigma | |
else: | |
raise ValueError(f'Coloring method {method} not found.') | |
return C |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment