Skip to content

Instantly share code, notes, and snippets.

@cwindolf
cwindolf / cluster_scatter.py
Last active March 9, 2022 17:43
Categorical scatterplot with Gaussian contours
# adapted from https://matplotlib.org/3.1.1/gallery/statistics/confidence_ellipse.html
import numpy as np
import matplotlib.pyplot as plt
import colorcet
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
def cluster_scatter(xs, ys, ids, ax=None, n_std=2.0):
ax = ax or plt.gca()
@cwindolf
cwindolf / translate_torch.py
Last active November 24, 2021 15:26
Translate a batch of images in PyTorch
import torch
import torch.nn.functional as F
def translate(input, shifts, mode='bilinear', padding_mode='zeros'):
"""Translate a batch of images by a batch of xy shifts
Arguments
---------
input : torch.Tensor NCHW
@cwindolf
cwindolf / triginterp.py
Created November 2, 2021 15:27
Trigonometric interpolation (quadratic Wikipedia algorithm, supports nonuniform input/output domains)
import numpy as np
from .triginterp_inner import triginterp_inner
def triginterp(x, y, xi):
"""Trigonometric interpolation with zero-padding (lol, not periodic). Easy to change."""
P = np.zeros_like(xi, dtype=np.float64)
triginterp_inner(
x.astype(np.float64), y.astype(np.float64), xi.astype(np.float64), P
)
@cwindolf
cwindolf / modified_mandel_betensky.py
Last active October 13, 2021 17:32
Modified Mandel-Betensky simultaneous nonparametric confidence interval
"""
Implements the nonparametric simultaneous confidence interval described
in Gao et al. [1], which modifies the Mandel-Betensky simultaneous CI [2]
such that it is admissible. Notation in the code below comes from [1].
Takes as input an array of bootstrap samples / replicates, returns lower
and upper bounds at 1-alpha confidence.
[1]: https://www.mdpi.com/2073-8994/13/7/1212
[2]: https://pubmed.ncbi.nlm.nih.gov/26452746/
@cwindolf
cwindolf / ipygif.py
Last active October 11, 2021 15:59
Quickly animate numpy arrays in Jupyter
import tempfile
import imageio
from IPython.display import Image
def ipygif(z, fps=16, width=200, height=200):
f = tempfile.NamedTemporaryFile(prefix="ipygif", suffix=".gif")
z = z - z.min()
z *= 255.0 / z.max()
imageio.mimwrite(f.name, z.astype(np.uint8), fps=fps)
return Image(filename=f.name, embed=True, width=width, height=height)
@cwindolf
cwindolf / zroll1d.py
Created September 17, 2021 19:51
np.roll, but not toroidal (backfills with 0s), and only 1d.
import numpy as np
def zroll1d(arr1d, x):
"""np.roll, but not toroidal (backfills with 0s), and only 1d."""
if x == 0:
return arr1d
elif x > 0:
return np.pad(
arr1d[:-x],
((x, 0),),
@cwindolf
cwindolf / argmedian.py
Last active December 20, 2021 20:59
argmedian.py: Compute the median of data distributed according to a pmf (or many pmfs)
import numpy as np
def argmedian(p, axis=None, check_pmf=True):
"""Compute the median of a pmf or many pmfs
Here, `p` represents one or many probability mass functions, and
the index to a median will be returned for each pmf.
- If `axis=None`, the flattened version of `p` will be considered
@cwindolf
cwindolf / normxcorr.py
Last active June 24, 2021 16:53
Optionally FFT-based normalized cross-correlation in Python / NumPy
# Translation of the Octave implementation (GPL), which is
# copyright 2014 Benjamin Eltzner. For that code, and license, see:
# hg.code.sf.net/p/octave/image/file/tip/inst/normxcorr2.m
import numpy as np
from scipy.signal import correlate, convolve
def normxcorr(template, x, mode="full", method="auto", assume_centered=False):
"""normxcorr: Normalized cross-correlation
@cwindolf
cwindolf / Aligned.sublime-snippet
Created August 24, 2020 00:20
Sublime snippets
<snippet>
<content><![CDATA[
\$\$\begin{aligned}
$1
\end{aligned}\$\$
]]></content>
<tabTrigger>ali</tabTrigger>
<scope>text.html.markdown,text.html.markdown.multimarkdown</scope>
</snippet>
@cwindolf
cwindolf / timer.py
Last active August 12, 2024 22:09
Wow, what a cool original idea
import time
class timer:
def __init__(self, name="timer", format="{:0.1f}"):
self.name = name
self.format = format
def __enter__(self):
self.start = time.perf_counter()
return self