Created
December 31, 2019 05:41
-
-
Save cycyyy/f9ac69febcb629ce6eac5e7915babcc8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import math | |
from scipy.spatial import distance | |
n = 2000 | |
p = 800 | |
r = 1000 | |
print("r/n:", r/n) | |
print("p/n:", p/n) | |
print("theory result:", math.log(1+(n-p)/(r-p))) | |
TRUE_W = np.random.uniform(size=p) | |
TRUE_b = np.full(n, np.random.uniform(size=1)) | |
X = np.random.uniform(size=(n, p)) | |
noise = np.random.uniform(size=(n)) | |
y = np.dot(X, TRUE_W) + TRUE_b + noise | |
r1 = np.linalg.inv(np.dot(X.T, X)).dot(X.T).dot(y) | |
#print(distance.cosine(r1, TRUE_W)) | |
total_ve = 0.0 | |
log_ve = 0.0 | |
for i in range(10): | |
S = np.random.normal(n, r) | |
S = S / math.sqrt(r) | |
X_S = np.dot(X.T, S).T | |
y_s = np.dot(y.T, S).T | |
r2 = np.linalg.inv(np.dot(X_S.T, X_S)).dot(X_S.T).dot(y_s) | |
# print(distance.cosine(r2, TRUE_W)) | |
VE = np.linalg.norm(r2 - TRUE_W, ord=2)/np.linalg.norm(r1 - TRUE_W, ord=2) | |
total_ve += VE | |
log_ve += math.log(VE) | |
print(math.log(total_ve/10)) | |
print(log_ve/10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment