Last active
September 12, 2019 21:57
-
-
Save cyrusbehr/6ce760e223b4eba22ebcd4c0f44d28c0 to your computer and use it in GitHub Desktop.
Auto tune MXNet model and compile to TVM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import nnvm.testing | |
import nnvm.compiler | |
import tvm | |
import mxnet as mx | |
from tvm import autotvm | |
import tvm.relay as relay | |
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner | |
import tvm.contrib.graph_runtime as runtime | |
def get_network(batch_size): | |
prefix,epoch = "/[path_to_model_dir_here]/model",0 | |
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) | |
opt_level = 3 | |
shape_dict = {'data': (1, 3, 112, 112)} | |
nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(sym, arg_params, aux_params) | |
input_shape = (batch_size, 3, 112, 112) | |
output_shape = (batch_size, 512) | |
return nnvm_sym, nnvm_params, input_shape, output_shape | |
target = "llvm -mcpu=skylake" | |
batch_size = 1 | |
dtype = "float32" | |
model_name = "resnet-100" | |
log_file = "%s.log" % model_name | |
num_threads = 1 | |
os.environ["TVM_NUM_THREADS"] = str(num_threads) | |
tuning_option = { | |
'log_filename': log_file, | |
'tuner': 'random', | |
'early_stopping': None, | |
'measure_option': autotvm.measure_option( | |
builder=autotvm.LocalBuilder(), | |
runner=autotvm.LocalRunner(number=10, repeat=1, | |
min_repeat_ms=1000), | |
), | |
} | |
def tune_kernels(tasks, | |
measure_option, | |
tuner='gridsearch', | |
early_stopping=None, | |
log_filename='tuning.log'): | |
for i, tsk in enumerate(tasks): | |
prefix = "[Task %2d/%2d] " % (i+1, len(tasks)) | |
# converting conv2d tasks to conv2d_NCHWc tasks | |
op_name = tsk.workload[0] | |
if op_name == 'conv2d': | |
func_create = 'topi_x86_conv2d_NCHWc' | |
elif op_name == 'depthwise_conv2d_nchw': | |
func_create = 'topi_x86_depthwise_conv2d_NCHWc_from_nchw' | |
else: | |
raise ValueError("Tuning {} is not supported on x86".format(op_name)) | |
task = autotvm.task.create(func_create, args=tsk.args, | |
target=target, template_key='direct') | |
task.workload = tsk.workload | |
# create tuner | |
if tuner == 'xgb' or tuner == 'xgb-rank': | |
tuner_obj = XGBTuner(task, loss_type='rank') | |
elif tuner == 'ga': | |
tuner_obj = GATuner(task, pop_size=50) | |
elif tuner == 'random': | |
tuner_obj = RandomTuner(task) | |
elif tuner == 'gridsearch': | |
tuner_obj = GridSearchTuner(task) | |
else: | |
raise ValueError("Invalid tuner: " + tuner) | |
# do tuning | |
n_trial=len(task.config_space) | |
tuner_obj.tune(n_trial=n_trial, | |
early_stopping=early_stopping, | |
measure_option=measure_option, | |
callbacks=[ | |
autotvm.callback.progress_bar(n_trial, prefix=prefix), | |
autotvm.callback.log_to_file(log_filename)]) | |
def tune_and_evaluate(tuning_opt): | |
# extract workloads from nnvm graph | |
print("Extract tasks...") | |
net, params, data_shape, out_shape = get_network(batch_size) | |
tasks = autotvm.task.extract_from_graph(net, target=target, | |
shape={'data': data_shape}, dtype=dtype, | |
symbols=(nnvm.sym.conv2d,)) | |
# run tuning tasks | |
print("Tuning...") | |
tune_kernels(tasks, **tuning_opt) | |
# compile kernels with history best records | |
with autotvm.apply_history_best(log_file): | |
print("Compile...") | |
with nnvm.compiler.build_config(opt_level=3): | |
graph, lib, params = nnvm.compiler.build( | |
net, target=target, shape={'data': data_shape}, params=params, dtype=dtype) | |
# upload parameters to device | |
ctx = tvm.cpu() | |
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype)) | |
module = runtime.create(graph, lib, ctx) | |
module.set_input('data', data_tvm) | |
module.set_input(**params) | |
# evaluate | |
print("Evaluate inference time cost...") | |
ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3) | |
prof_res = np.array(ftimer().results) * 1000 # convert to millisecond | |
print("Mean inference time (std dev): %.2f ms (%.2f ms)" % | |
(np.mean(prof_res), np.std(prof_res))) | |
lib.export_library("./tvm_lib.so") | |
print('lib export succeefully') | |
with open("./tvm.json", "w") as fo: | |
fo.write(graph.json()) | |
with open("./tvm.params", "wb") as fo: | |
fo.write(nnvm.compiler.save_param_dict(params)) | |
tune_and_evaluate(tuning_option) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment