Created
January 8, 2015 16:33
-
-
Save czxttkl/e51839a437fa3d665839 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package io.github.czxttkl; | |
import java.util.logging.ConsoleHandler; | |
import java.util.logging.Level; | |
import java.util.logging.Logger; | |
import java.util.logging.SimpleFormatter; | |
import org.apache.commons.math3.random.MersenneTwister; | |
import org.apache.commons.math3.random.RandomGenerator; | |
import org.deeplearning4j.datasets.iterator.DataSetIterator; | |
import org.deeplearning4j.datasets.iterator.MultipleEpochsIterator; | |
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator; | |
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator; | |
import org.deeplearning4j.distributions.Distributions; | |
import org.deeplearning4j.eval.Evaluation; | |
import org.deeplearning4j.models.featuredetectors.rbm.RBM; | |
import org.deeplearning4j.nn.api.LayerFactory; | |
import org.deeplearning4j.nn.api.OptimizationAlgorithm; | |
import org.deeplearning4j.nn.conf.MultiLayerConfiguration; | |
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | |
import org.deeplearning4j.nn.layers.OutputLayer; | |
import org.deeplearning4j.nn.layers.factory.DefaultLayerFactory; | |
import org.deeplearning4j.nn.layers.factory.LayerFactories; | |
import org.deeplearning4j.nn.layers.factory.PretrainLayerFactory; | |
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | |
import org.deeplearning4j.nn.weights.WeightInit; | |
import org.nd4j.linalg.api.activation.Activations; | |
import org.nd4j.linalg.api.ndarray.INDArray; | |
import org.nd4j.linalg.dataset.DataSet; | |
import org.nd4j.linalg.dataset.SplitTestAndTrain; | |
import org.nd4j.linalg.lossfunctions.LossFunctions; | |
/** | |
* Created by agibsonccc on 9/11/14. | |
*/ | |
public class IrisExample { | |
private static Logger log = Logger.getLogger("Test"); | |
private static final int LAYER = 4; | |
public static void main(String[] args) throws Exception { | |
RandomGenerator gen = new MersenneTwister(123); | |
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() | |
.iterations(100).layerFactory(new PretrainLayerFactory(RBM.class)) | |
.weightInit(WeightInit.SIZE).dist(Distributions.normal(gen,1e-1)) | |
.activationFunction(Activations.tanh()).momentum(0.9).dropOut(0.8) | |
.optimizationAlgo(OptimizationAlgorithm.GRADIENT_DESCENT) | |
.constrainGradientToUnitNorm(true).k(5).regularization(true).l2(2e-4) | |
.visibleUnit(RBM.VisibleUnit.GAUSSIAN).hiddenUnit(RBM.HiddenUnit.RECTIFIED) | |
.lossFunction(LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY) | |
.rng(gen) | |
.learningRate(1e-1f) | |
.nIn(4).nOut(3).list(3).useDropConnect(false) | |
.hiddenLayerSizes(new int[]{3,3}) | |
.override(new NeuralNetConfiguration.ConfOverride() { | |
@Override | |
public void override(int i, NeuralNetConfiguration.Builder builder) { | |
if (i == 2) { | |
builder.layerFactory(new DefaultLayerFactory(OutputLayer.class)); | |
builder.weightInit(WeightInit.ZERO); | |
builder.activationFunction(Activations.softMaxRows()); | |
builder.lossFunction(LossFunctions.LossFunction.MCXENT); | |
} | |
} | |
}).build(); | |
MultiLayerNetwork d = new MultiLayerNetwork(conf); | |
DataSetIterator iter = new IrisDataSetIterator(150, 150); | |
DataSet next = iter.next(); | |
next.normalizeZeroMeanZeroUnitVariance(); | |
next.shuffle(); | |
SplitTestAndTrain testAndTrain = next.splitTestAndTrain(110); | |
DataSet train = testAndTrain.getTrain(); | |
d.fit(train); | |
DataSet test = testAndTrain.getTest(); | |
Evaluation eval = new Evaluation(); | |
INDArray output = d.output(test.getFeatureMatrix()); | |
eval.eval(test.getLabels(),output); | |
log.info("Score " + eval.stats()); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment