Created
December 12, 2017 00:44
-
-
Save d0znpp/adabe5f7160c1ac3a7088379ad4af746 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def create_variables(self): | |
with tf.name_scope("model_inputs"): | |
# raw state representation | |
self.states = tf.placeholder(tf.float32, [None, self.max_layers*4], name="states") | |
with tf.name_scope("predict_actions"): | |
# initialize policy network | |
with tf.variable_scope("policy_network"): | |
self.policy_outputs = self.policy_network(self.states, self.max_layers) | |
self.action_scores = tf.identity(self.policy_outputs, name="action_scores") | |
self.predicted_action = tf.cast(tf.scalar_mul(self.division_rate, self.action_scores), tf.int32, name="predicted_action") | |
# regularization loss | |
policy_network_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy_network") | |
# compute loss and gradients | |
with tf.name_scope("compute_gradients"): | |
# gradients for selecting action from policy network | |
self.discounted_rewards = tf.placeholder(tf.float32, (None,), name="discounted_rewards") | |
with tf.variable_scope("policy_network", reuse=True): | |
self.logprobs = self.policy_network(self.states, self.max_layers) | |
# compute policy loss and regularization loss | |
self.cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(logits=self.logprobs, labels=self.states) | |
self.pg_loss = tf.reduce_mean(self.cross_entropy_loss) | |
self.reg_loss = tf.reduce_sum([tf.reduce_sum(tf.square(x)) for x in policy_network_variables]) | |
self.loss = self.pg_loss + self.reg_param * self.reg_loss | |
#compute gradients | |
self.gradients = self.optimizer.compute_gradients(self.loss) | |
# compute policy gradients | |
for i, (grad, var) in enumerate(self.gradients): | |
if grad is not None: | |
self.gradients[i] = (grad * self.discounted_rewards, var) | |
# training update | |
with tf.name_scope("train_policy_network"): | |
# apply gradients to update policy network | |
self.train_op = self.optimizer.apply_gradients(self.gradients) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment