Last active
September 13, 2017 16:58
-
-
Save d4rkc0de/0601195571e51b787e1fa5f48dd35637 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| from sklearn.preprocessing import Imputer | |
| from sklearn.preprocessing import LabelEncoder, OneHotEncoder | |
| from sklearn.linear_model import LinearRegression | |
| # Importing the dataset | |
| dataset = pd.read_csv('train.csv') | |
| df = pd.DataFrame(dataset) | |
| # Replace nan values in Embarked with most frequent element | |
| df.Embarked = df.Embarked.fillna(df['Embarked'].value_counts().idxmax()) | |
| X = df.iloc[:, [2, 4, 5, 6, 7, 9 ,11]].values | |
| y = df.iloc[:, 1].values | |
| # check for nan | |
| #df.Embarked.isnull().values.any() | |
| # Replace nan values in Age with mean of values | |
| imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) | |
| imputer = imputer.fit(X[:, 2:3]) | |
| X[:, 2:3] = imputer.transform(X[:, 2:3]) | |
| # Encoding categorical data | |
| labelencoder_X = LabelEncoder() | |
| X[:, 1] = labelencoder_X.fit_transform(X[:, 1]) | |
| labelencoder_X_2 = LabelEncoder() | |
| X[:, 6] = labelencoder_X_2.fit_transform(X[:, 6]) | |
| onehotencoder = OneHotEncoder(categorical_features = [1]) | |
| X = onehotencoder.fit_transform(X).toarray() | |
| # Avoiding the dummy variable trap | |
| X = X[:, 1:] | |
| onehotencoder_2 = OneHotEncoder(categorical_features = [6]) | |
| X = onehotencoder_2.fit_transform(X).toarray() | |
| # Avoiding the dummy variable trap | |
| X = X[:, 1:] | |
| # predicting with linear regression | |
| regressor = LinearRegression() | |
| regressor.fit(X,y) | |
| # test part | |
| dataset_test = pd.read_csv('test.csv') | |
| df_test = pd.DataFrame(dataset_test) | |
| X_test_id = df_test.iloc[:, [0]].values | |
| # Replace nan values in Embarked with most frequent element | |
| df_test.Embarked = df_test.Embarked.fillna(df_test['Embarked'].value_counts().idxmax()) | |
| X_test = df_test.iloc[:, [1, 3, 4, 5, 6, 8 ,10]].values | |
| # check for nan | |
| #df.Embarked.isnull().values.any() | |
| for x in X_test: | |
| print(x) | |
| # Replace nan values in Age with mean of values | |
| imputer_test = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) | |
| imputer_test = imputer_test.fit(X_test[:, 2:3]) | |
| X_test[:, 2:3] = imputer_test.transform(X_test[:, 2:3]) | |
| imputer_test_2 = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) | |
| imputer_test_2 = imputer_test_2.fit(X_test[:, 5:6]) | |
| X_test[:, 5:6] = imputer_test_2.transform(X_test[:, 5:6]) | |
| # Encoding categorical data | |
| labelencoder_X_test = LabelEncoder() | |
| X_test[:, 1] = labelencoder_X_test.fit_transform(X_test[:, 1]) | |
| labelencoder_X_2_test = LabelEncoder() | |
| X_test[:, 6] = labelencoder_X_2_test.fit_transform(X_test[:, 6]) | |
| onehotencoder_test = OneHotEncoder(categorical_features = [1]) | |
| X_test = onehotencoder_test.fit_transform(X_test).toarray() | |
| # Avoiding the dummy variable trap | |
| X_test = X_test[:, 1:] | |
| onehotencoder_2_test = OneHotEncoder(categorical_features = [6]) | |
| X_test = onehotencoder_2_test.fit_transform(X_test).toarray() | |
| # Avoiding the dummy variable trap | |
| X_test = X_test[:, 1:] | |
| y_pred = regressor.predict(X_test) | |
| y_pred = [round(x) for x in y_pred] | |
| y_pred_int = [round(x) for x in y_pred] | |
| y_pred_int = [int(i) for i in y_pred_int] | |
| with open('pred.csv','wb') as file: | |
| for i in range(len(y_pred_int)): | |
| file.write(X_test_id[i] + ',' + y_pred_int[i]) | |
| file.write('\n') | |
| file.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment