Last active
July 16, 2019 09:14
-
-
Save da-steve101/31693ebfa1b451562810d8644b788900 to your computer and use it in GitHub Desktop.
This is a modified version of https://gist.github.com/monikkinom/e97d518fe02a79177b081c028a83ec1c ... It uses only a single floating point value as the output instead of one hot encoding.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/ | |
import numpy as np | |
import random | |
from random import shuffle | |
import tensorflow as tf | |
# from tensorflow.models.rnn import rnn_cell | |
# from tensorflow.models.rnn import rnn | |
NUM_EXAMPLES = 10000 | |
train_input = ['{0:020b}'.format(i) for i in range(2**20)] | |
shuffle(train_input) | |
train_input = [map(int,i) for i in train_input] | |
ti = [] | |
for i in train_input: | |
temp_list = [] | |
for j in i: | |
temp_list.append([j]) | |
ti.append(np.array(temp_list)) | |
train_input = ti | |
train_output = [] | |
for i in train_input: | |
count = 0 | |
for j in i: | |
if j[0] == 1: | |
count+=1 | |
train_output.append([count/20.0]) | |
test_input = train_input[NUM_EXAMPLES:] | |
test_output = train_output[NUM_EXAMPLES:] | |
train_input = train_input[:NUM_EXAMPLES] | |
train_output = train_output[:NUM_EXAMPLES] | |
print( "test and training data loaded" ) | |
data = tf.placeholder(tf.float32, [None, 20,1]) #Number of examples, number of input, dimension of each input | |
target = tf.placeholder(tf.float32, [None, 1]) | |
num_hidden = 24 | |
cell = tf.contrib.rnn.LSTMCell(num_hidden,state_is_tuple=True) | |
val, _ = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32) | |
val = tf.transpose(val, [1, 0, 2]) | |
last = tf.gather(val, int(val.get_shape()[0]) - 1) | |
weight = tf.Variable(tf.truncated_normal([num_hidden, int(target.get_shape()[1])])) | |
bias = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]])) | |
prediction = tf.matmul(last, weight) + bias | |
cross_entropy = tf.reduce_sum(tf.abs(target - tf.clip_by_value(prediction,1e-10,1.0))) | |
optimizer = tf.train.AdamOptimizer() | |
minimize = optimizer.minimize(cross_entropy) | |
pred_rounded = tf.round( prediction*20 )/20.0 | |
mistakes = tf.not_equal( target, pred_rounded ) | |
error = tf.reduce_mean(tf.cast(mistakes, tf.float32)) | |
init_op = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init_op) | |
batch_size = 1000 | |
no_of_batches = int(len(train_input) / batch_size ) | |
epoch = 100 | |
for i in range(epoch): | |
ptr = 0 | |
for j in range(no_of_batches): | |
inp = train_input[ptr:ptr+batch_size] | |
out = train_output[ptr:ptr+batch_size] | |
ptr+=batch_size | |
sess.run(minimize,{data: inp, target: out}) | |
print( "Epoch ",str(i) ) | |
incorrect = sess.run(error,{data: test_input, target: test_output}) | |
print( sess.run(prediction,{data: [[[1],[0],[0],[1],[1],[0],[1],[1],[1],[0],[1],[0],[0],[1],[1],[0],[1],[1],[1],[0]]]}) ) | |
print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect)) | |
sess.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, Would you be interested in helping me with this using forex data? ...