Created
May 12, 2017 00:36
-
-
Save da-steve101/6857621f7fefe8065f36b1e9b9f366e2 to your computer and use it in GitHub Desktop.
This is a modified version of https://gist.github.com/monikkinom/e97d518fe02a79177b081c028a83ec1c
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/ | |
import numpy as np | |
import random | |
from random import shuffle | |
import tensorflow as tf | |
# from tensorflow.models.rnn import rnn_cell | |
# from tensorflow.models.rnn import rnn | |
NUM_EXAMPLES = 10000 | |
train_input = ['{0:020b}'.format(i) for i in range(2**20)] | |
shuffle(train_input) | |
train_input = [map(int,i) for i in train_input] | |
ti = [] | |
for i in train_input: | |
temp_list = [] | |
for j in i: | |
temp_list.append([j]) | |
ti.append(np.array(temp_list)) | |
train_input = ti | |
train_output = [] | |
for i in train_input: | |
count = 0 | |
for j in i: | |
if j[0] == 1: | |
count+=1 | |
train_output.append([count/20.0]) | |
test_input = train_input[NUM_EXAMPLES:] | |
test_output = train_output[NUM_EXAMPLES:] | |
train_input = train_input[:NUM_EXAMPLES] | |
train_output = train_output[:NUM_EXAMPLES] | |
print( "test and training data loaded" ) | |
data = tf.placeholder(tf.float32, [None, 20,1]) #Number of examples, number of input, dimension of each input | |
target = tf.placeholder(tf.float32, [None, 1]) | |
num_hidden = 24 | |
cell = tf.contrib.rnn.LSTMCell(num_hidden,state_is_tuple=True) | |
val, _ = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32) | |
val = tf.transpose(val, [1, 0, 2]) | |
last = tf.gather(val, int(val.get_shape()[0]) - 1) | |
weight = tf.Variable(tf.truncated_normal([num_hidden, int(target.get_shape()[1])])) | |
bias = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]])) | |
prediction = tf.matmul(last, weight) + bias | |
cross_entropy = tf.reduce_sum(tf.abs(target - tf.clip_by_value(prediction,1e-10,1.0))) | |
optimizer = tf.train.AdamOptimizer() | |
minimize = optimizer.minimize(cross_entropy) | |
pred_rounded = tf.round( prediction*20 )/20.0 | |
mistakes = tf.not_equal( target, pred_rounded ) | |
error = tf.reduce_mean(tf.cast(mistakes, tf.float32)) | |
init_op = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init_op) | |
batch_size = 1000 | |
no_of_batches = int(len(train_input) / batch_size ) | |
epoch = 100 | |
for i in range(epoch): | |
ptr = 0 | |
for j in range(no_of_batches): | |
inp = train_input[ptr:ptr+batch_size] | |
out = train_output[ptr:ptr+batch_size] | |
ptr+=batch_size | |
sess.run(minimize,{data: inp, target: out}) | |
print( "Epoch ",str(i) ) | |
incorrect = sess.run(error,{data: test_input, target: test_output}) | |
print( sess.run(prediction,{data: [[[1],[0],[0],[1],[1],[0],[1],[1],[1],[0],[1],[0],[0],[1],[1],[0],[1],[1],[1],[0]]]}) ) | |
print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect)) | |
sess.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment