Created
November 14, 2017 14:57
-
-
Save daa233/e6f237a70a3586904c615334a1fea27c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def plot_confusion_matrix(cm, classes, | |
normalize=False, | |
title='Confusion matrix', | |
cmap=plt.cm.jet): | |
""" | |
This function prints and plots the confusion matrix. | |
Normalization can be applied by setting `normalize=True`. | |
""" | |
plt.imshow(cm, interpolation='nearest', cmap=cmap) | |
plt.title(title) | |
plt.colorbar() | |
tick_marks = np.arange(len(classes)) | |
plt.xticks(tick_marks, classes, rotation=45) | |
plt.yticks(tick_marks, classes) | |
if normalize: | |
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
print("Normalized confusion matrix") | |
else: | |
print('Confusion matrix, without normalization') | |
print(cm) | |
thresh = cm.max() / 2. | |
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
plt.text(j, i, '', | |
horizontalalignment="center", | |
color="white" if cm[i, j] > thresh else "black") | |
plt.tight_layout() | |
plt.ylabel('True label') | |
plt.xlabel('Predicted label') | |
confusion_matrix = np.array([[4, 1], [2, 8]]) | |
classes = [0, 1] | |
plot_confusion_matrix(confusion_matrix, classes) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment