Created
September 1, 2024 10:15
-
-
Save dacr/45d6ec5905eb5034bb76078e98057550 to your computer and use it in GitHub Desktop.
image to text try / published by https://github.com/dacr/code-examples-manager #b35b9b44-ec04-46f5-b904-43605e2b2107/e0d7d84a713d4e8b97de749920b57b77a731fa9
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// summary : image to text try | |
// keywords : djl, machine-learning, image-to-text, ai, @testable | |
// publish : gist | |
// authors : David Crosson | |
// license : Apache NON-AI License Version 2.0 (https://raw.githubusercontent.com/non-ai-licenses/non-ai-licenses/main/NON-AI-APACHE2) | |
// id : b35b9b44-ec04-46f5-b904-43605e2b2107 | |
// created-on : 2024-07-20T08:42:43+02:00 | |
// managed-by : https://github.com/dacr/code-examples-manager | |
// run-with : scala-cli $file | |
// --------------------- | |
//> using scala "3.4.2" | |
//> using dep "org.slf4j:slf4j-api:2.0.13" | |
//> using dep "org.slf4j:slf4j-simple:2.0.13" | |
//> using dep "net.java.dev.jna:jna:5.14.0" | |
//> using dep "ai.djl:api:0.29.0" | |
//> using dep "ai.djl:basicdataset:0.29.0" | |
//> using dep "ai.djl:model-zoo:0.29.0" | |
//> using dep "ai.djl.huggingface:tokenizers:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-engine:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-model-zoo:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-engine:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-model-zoo:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-engine:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-model-zoo:0.29.0" | |
//> using dep "ai.djl.onnxruntime:onnxruntime-engine:0.29.0" | |
// --------------------- | |
//System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "debug") | |
import ai.djl.Application | |
import ai.djl.engine.Engine | |
import ai.djl.modality.Classifications | |
import ai.djl.modality.Classifications.Classification | |
import ai.djl.modality.cv.Image | |
import ai.djl.modality.cv.ImageFactory | |
import ai.djl.repository.zoo.Criteria | |
import ai.djl.repository.zoo.ModelZoo | |
import ai.djl.repository.zoo.ZooModel | |
import ai.djl.training.util.ProgressBar | |
import java.nio.file.Files | |
import java.nio.file.Path | |
import java.nio.file.Paths | |
import scala.jdk.CollectionConverters.* | |
// ---------------------------------------------------------------------------------------------- | |
val criteria = | |
Criteria.builder | |
.optApplication(Application.CV.IMAGE_CLASSIFICATION) | |
.setTypes(classOf[Image], classOf[Classifications]) | |
// ------------------------------------ | |
//.optFilter("flavor","v1") | |
//.optFilter("dataset","cifar10") | |
// ------------------------------------ | |
//.optFilter("flavor","v3_large") | |
//.optFilter("dataset","imagenet") | |
// ------------------------------------ | |
.optFilter("flavor","v1d") | |
.optFilter("dataset","imagenet") | |
.optProgress(new ProgressBar) | |
.build | |
val model = ModelZoo.loadModel(criteria) | |
val predictor = model.newPredictor() | |
val inputImageURL = "https://mapland.fr/data/ai/images-samples/example-001.jpg" | |
val img = ImageFactory.getInstance().fromUrl(inputImageURL) | |
val found: Classifications = predictor.predict(img) | |
found.items() | |
.asScala | |
.toList | |
.asInstanceOf[List[Classification]] | |
.filter(_.getProbability > 0.5d) | |
.foreach{cl => | |
println(cl.getClassName+" "+cl.getProbability) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment