Last active
May 3, 2025 09:32
-
-
Save dacr/936ea1aca3765cd9dc882a4526098088 to your computer and use it in GitHub Desktop.
Things (objects, people, animals) detection using DJL - compare models efficiency / published by https://github.com/dacr/code-examples-manager #bd813b80-9e47-489d-9a1d-86c5fb5c828e/215a493b6eb402293312d87dce57757676cdbfe
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// summary : Things (objects, people, animals) detection using DJL - compare models efficiency | |
// keywords : djl, machine-learning, tutorial, detection, ai, @testable | |
// publish : gist | |
// authors : David Crosson | |
// license : Apache NON-AI License Version 2.0 (https://raw.githubusercontent.com/non-ai-licenses/non-ai-licenses/main/NON-AI-APACHE2) | |
// id : bd813b80-9e47-489d-9a1d-86c5fb5c828e | |
// created-on : 2024-01-27T14:36:36+01:00 | |
// managed-by : https://github.com/dacr/code-examples-manager | |
// run-with : scala-cli $file | |
// --------------------- | |
//> using scala "3.4.2" | |
//> using dep "org.slf4j:slf4j-api:2.0.13" | |
//> using dep "org.slf4j:slf4j-simple:2.0.13" | |
//> using dep "net.java.dev.jna:jna:5.14.0" | |
//> using dep "ai.djl:api:0.29.0" | |
//> using dep "ai.djl:basicdataset:0.29.0" | |
//> using dep "ai.djl:model-zoo:0.29.0" | |
//> using dep "ai.djl.huggingface:tokenizers:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-engine:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-model-zoo:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-engine:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-model-zoo:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-engine:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-model-zoo:0.29.0" | |
//> using dep "ai.djl.onnxruntime:onnxruntime-engine:0.29.0" | |
// --------------------- | |
System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "error") | |
import ai.djl.Application | |
import ai.djl.engine.Engine | |
import ai.djl.modality.cv.Image | |
import ai.djl.modality.cv.ImageFactory | |
import ai.djl.modality.cv.output.DetectedObjects | |
import ai.djl.modality.cv.output.DetectedObjects.DetectedObject | |
import ai.djl.repository.Artifact | |
import ai.djl.repository.zoo.{Criteria, ModelNotFoundException, ModelZoo, ModelZooResolver, ZooModel} | |
import ai.djl.training.util.ProgressBar | |
import java.net.{URI, URL} | |
import java.nio.file.Files | |
import java.nio.file.Path | |
import java.nio.file.Paths | |
import java.util.UUID | |
import java.util.concurrent.TimeUnit | |
import scala.concurrent.duration.Duration | |
import scala.jdk.CollectionConverters.* | |
import scala.io.AnsiColor.{BLUE, BOLD, CYAN, GREEN, MAGENTA, RED, RESET, UNDERLINED, YELLOW} | |
import scala.util.{Success, Try} | |
// ---------------------------------------------------------------------------------------------- | |
def saveBoundingBoxImage(img: Image, detection: DetectedObjects, outputFile: Path): Unit = { | |
val newImage = img.duplicate() | |
newImage.drawBoundingBoxes(detection) | |
import java.nio.file.Files | |
newImage.save(Files.newOutputStream(outputFile), "png") | |
} | |
def basename(filename: String): String = { | |
filename | |
.split("[/](?=[^/]*$)", 2) | |
.last | |
.split("[.]", 2) | |
.head | |
} | |
// ---------------------------------------------------------------------------------------------- | |
val outputDir = Paths.get("build/output") | |
Files.createDirectories(outputDir) | |
// ---------------------------------------------------------------------------------------------- | |
case class ModelArtifact(artifact: Artifact) { | |
val uuid = UUID.nameUUIDFromBytes( | |
s"$groupId$artifactId$version${properties.toList.sorted}".getBytes | |
) | |
def groupId: String = artifact.getMetadata.getGroupId | |
def artifactId: String = artifact.getMetadata.getArtifactId | |
def version: String = artifact.getVersion | |
def properties: Map[String, String] = artifact.getProperties.asScala.toMap | |
def ident = toString() | |
override def toString: String = s"$groupId:$artifactId:$version" | |
} | |
// ---------------------------------------------------------------------------------------------- | |
case class ModelResult( | |
inputImageSource: URL, | |
modelArtifact: ModelArtifact, | |
selectedModelPath: Path, | |
responseTime: Duration, | |
detectedObjects: List[DetectedObject], | |
generatedBoundedBoxesImagePath: Path | |
) | |
val blackListed = Set[String]( | |
"ai.djl.paddlepaddle:face_detection:0.0.1", // java.lang.IndexOutOfBoundsException: Incorrect number of elements in NDList.singletonOrThrow: Expected 1 and was 4 | |
"ai.djl.zoo:ssd:0.0.2", // java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bounds for length 1 | |
) | |
def testModel(modelArtifact: ModelArtifact, inputImageSources: List[URL]): List[ModelResult] = { | |
println(s"${RED}TESTING MODEL $modelArtifact$RESET") | |
val criteria = | |
Criteria | |
.builder() | |
.setTypes(classOf[Image], classOf[DetectedObjects]) | |
.optApplication(Application.CV.OBJECT_DETECTION) | |
.optGroupId(modelArtifact.groupId) | |
.optArtifactId(modelArtifact.artifactId) | |
.optFilters(modelArtifact.properties.asJava) | |
.optProgress(new ProgressBar) | |
.build() | |
try { | |
val model = ModelZoo.loadModel(criteria) | |
val predictor = model.newPredictor() | |
inputImageSources.map { inputImageSource => | |
val inputImage = ImageFactory.getInstance().fromUrl(inputImageSource) | |
val started = System.currentTimeMillis() | |
val detected: DetectedObjects = predictor.predict(inputImage) | |
val duration = Duration.apply(System.currentTimeMillis() - started, TimeUnit.MILLISECONDS) | |
val detectedObjects = detected | |
.items[DetectedObject]() | |
.asScala | |
.toList | |
val outputImageFile = outputDir.resolve(s"${basename(inputImageSource.getFile)}-${modelArtifact.uuid}.png") | |
saveBoundingBoxImage(inputImage, detected, outputImageFile) | |
ModelResult( | |
inputImageSource = inputImageSource, | |
modelArtifact = modelArtifact, | |
selectedModelPath = model.getModelPath, | |
responseTime = duration, | |
detectedObjects = detectedObjects, | |
generatedBoundedBoxesImagePath = outputImageFile | |
) | |
} | |
} catch { | |
case err: ModelNotFoundException => | |
println(s"No matching model for $modelArtifact : ${err.getMessage}") | |
Nil | |
} | |
} | |
def showResults(results: Seq[ModelResult]): Unit = { | |
results.groupBy(_.inputImageSource).foreach { (imageURL, resultsForImage) => | |
println(s"${BLUE}${BOLD}==========================================================================$RESET") | |
println(s"${BLUE}${BOLD}RESULTS FOR $imageURL$RESET") | |
resultsForImage.foreach { result => | |
import result.* | |
println(s"${BLUE}${BOLD}--------------------------------------------------------------------------$RESET") | |
println(s"${BLUE}${BOLD}MODEL ${modelArtifact.ident}$RESET") | |
println(s"${BLUE}PATH $selectedModelPath$RESET") | |
println(s"${GREEN}Number of detected object : ${detectedObjects.size} in $responseTime$RESET") | |
println(s"${GREEN} look at $generatedBoundedBoxesImagePath$RESET") | |
detectedObjects.sortBy(-_.getProbability).foreach { detectedObject => | |
println(f" $YELLOW$BOLD${detectedObject.getClassName} ${RED} ${detectedObject.getProbability}%1.2f$RESET") | |
} | |
} | |
} | |
} | |
val inputImageSources = | |
1.to(16).toList.map(n => URI.create(f"https://data.code-examples.org/ai/images-samples/example-$n%03d.jpg").toURL) | |
val objectDetectionsArtifacts = | |
ModelZoo | |
.listModels() | |
.asScala | |
.get(Application.CV.OBJECT_DETECTION) | |
.map(_.asScala) | |
.getOrElse(Nil) | |
.toList | |
val results = | |
objectDetectionsArtifacts | |
.map(ModelArtifact.apply) | |
.filterNot(artifactKey => blackListed.contains(artifactKey.ident)) | |
.map(modelArtifact => Try(testModel(modelArtifact, inputImageSources))) | |
.collect{case Success(results) => results} // TODO just ignoring failing models... | |
.flatten | |
showResults(results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment