Last active
September 1, 2024 10:15
-
-
Save dacr/936ea1aca3765cd9dc882a4526098088 to your computer and use it in GitHub Desktop.
Things (objects, people, animals) detection using DJL - compare models efficiency / published by https://github.com/dacr/code-examples-manager #bd813b80-9e47-489d-9a1d-86c5fb5c828e/f8bf87c03ba809abb1d5503d7f58ef7f7b87ee62
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// summary : Things (objects, people, animals) detection using DJL - compare models efficiency | |
// keywords : djl, machine-learning, tutorial, detection, ai, @testable | |
// publish : gist | |
// authors : David Crosson | |
// license : Apache NON-AI License Version 2.0 (https://raw.githubusercontent.com/non-ai-licenses/non-ai-licenses/main/NON-AI-APACHE2) | |
// id : bd813b80-9e47-489d-9a1d-86c5fb5c828e | |
// created-on : 2024-01-27T14:36:36+01:00 | |
// managed-by : https://github.com/dacr/code-examples-manager | |
// run-with : scala-cli $file | |
// --------------------- | |
//> using scala "3.4.2" | |
//> using dep "org.slf4j:slf4j-api:2.0.13" | |
//> using dep "org.slf4j:slf4j-simple:2.0.13" | |
//> using dep "net.java.dev.jna:jna:5.14.0" | |
//> using dep "ai.djl:api:0.29.0" | |
//> using dep "ai.djl:basicdataset:0.29.0" | |
//> using dep "ai.djl:model-zoo:0.29.0" | |
//> using dep "ai.djl.huggingface:tokenizers:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-engine:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-model-zoo:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-engine:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-model-zoo:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-engine:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-model-zoo:0.29.0" | |
//> using dep "ai.djl.onnxruntime:onnxruntime-engine:0.29.0" | |
// --------------------- | |
System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "error") | |
import ai.djl.Application | |
import ai.djl.engine.Engine | |
import ai.djl.modality.cv.Image | |
import ai.djl.modality.cv.ImageFactory | |
import ai.djl.modality.cv.output.DetectedObjects | |
import ai.djl.modality.cv.output.DetectedObjects.DetectedObject | |
import ai.djl.repository.Artifact | |
import ai.djl.repository.zoo.{Criteria, ModelNotFoundException, ModelZoo, ModelZooResolver, ZooModel} | |
import ai.djl.training.util.ProgressBar | |
import java.net.{URI, URL} | |
import java.nio.file.Files | |
import java.nio.file.Path | |
import java.nio.file.Paths | |
import java.util.UUID | |
import java.util.concurrent.TimeUnit | |
import scala.concurrent.duration.Duration | |
import scala.jdk.CollectionConverters.* | |
import scala.io.AnsiColor.{BLUE, BOLD, CYAN, GREEN, MAGENTA, RED, RESET, UNDERLINED, YELLOW} | |
import scala.util.{Success, Try} | |
// ---------------------------------------------------------------------------------------------- | |
def saveBoundingBoxImage(img: Image, detection: DetectedObjects, outputFile: Path): Unit = { | |
val newImage = img.duplicate() | |
newImage.drawBoundingBoxes(detection) | |
import java.nio.file.Files | |
newImage.save(Files.newOutputStream(outputFile), "png") | |
} | |
def basename(filename: String): String = { | |
filename | |
.split("[/](?=[^/]*$)", 2) | |
.last | |
.split("[.]", 2) | |
.head | |
} | |
// ---------------------------------------------------------------------------------------------- | |
val outputDir = Paths.get("build/output") | |
Files.createDirectories(outputDir) | |
// ---------------------------------------------------------------------------------------------- | |
case class ModelArtifact(artifact: Artifact) { | |
val uuid = UUID.nameUUIDFromBytes( | |
s"$groupId$artifactId$version${properties.toList.sorted}".getBytes | |
) | |
def groupId: String = artifact.getMetadata.getGroupId | |
def artifactId: String = artifact.getMetadata.getArtifactId | |
def version: String = artifact.getVersion | |
def properties: Map[String, String] = artifact.getProperties.asScala.toMap | |
def ident = toString() | |
override def toString: String = s"$groupId:$artifactId:$version" | |
} | |
// ---------------------------------------------------------------------------------------------- | |
case class ModelResult( | |
inputImageSource: URL, | |
modelArtifact: ModelArtifact, | |
selectedModelPath: Path, | |
responseTime: Duration, | |
detectedObjects: List[DetectedObject], | |
generatedBoundedBoxesImagePath: Path | |
) | |
val blackListed = Set[String]( | |
"ai.djl.paddlepaddle:face_detection:0.0.1", // java.lang.IndexOutOfBoundsException: Incorrect number of elements in NDList.singletonOrThrow: Expected 1 and was 4 | |
"ai.djl.zoo:ssd:0.0.2", // java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bounds for length 1 | |
) | |
def testModel(modelArtifact: ModelArtifact, inputImageSources: List[URL]): List[ModelResult] = { | |
println(s"${RED}TESTING MODEL $modelArtifact$RESET") | |
val criteria = | |
Criteria | |
.builder() | |
.setTypes(classOf[Image], classOf[DetectedObjects]) | |
.optApplication(Application.CV.OBJECT_DETECTION) | |
.optGroupId(modelArtifact.groupId) | |
.optArtifactId(modelArtifact.artifactId) | |
.optFilters(modelArtifact.properties.asJava) | |
.optProgress(new ProgressBar) | |
.build() | |
try { | |
val model = ModelZoo.loadModel(criteria) | |
val predictor = model.newPredictor() | |
inputImageSources.map { inputImageSource => | |
val inputImage = ImageFactory.getInstance().fromUrl(inputImageSource) | |
val started = System.currentTimeMillis() | |
val detected: DetectedObjects = predictor.predict(inputImage) | |
val duration = Duration.apply(System.currentTimeMillis() - started, TimeUnit.MILLISECONDS) | |
val detectedObjects = detected | |
.items[DetectedObject]() | |
.asScala | |
.toList | |
val outputImageFile = outputDir.resolve(s"${basename(inputImageSource.getFile)}-${modelArtifact.uuid}.png") | |
saveBoundingBoxImage(inputImage, detected, outputImageFile) | |
ModelResult( | |
inputImageSource = inputImageSource, | |
modelArtifact = modelArtifact, | |
selectedModelPath = model.getModelPath, | |
responseTime = duration, | |
detectedObjects = detectedObjects, | |
generatedBoundedBoxesImagePath = outputImageFile | |
) | |
} | |
} catch { | |
case err: ModelNotFoundException => | |
println(s"No matching model for $modelArtifact : ${err.getMessage}") | |
Nil | |
} | |
} | |
def showResults(results: Seq[ModelResult]): Unit = { | |
results.groupBy(_.inputImageSource).foreach { (imageURL, resultsForImage) => | |
println(s"${BLUE}${BOLD}==========================================================================$RESET") | |
println(s"${BLUE}${BOLD}RESULTS FOR $imageURL$RESET") | |
resultsForImage.foreach { result => | |
import result.* | |
println(s"${BLUE}${BOLD}--------------------------------------------------------------------------$RESET") | |
println(s"${BLUE}${BOLD}MODEL ${modelArtifact.ident}$RESET") | |
println(s"${BLUE}PATH $selectedModelPath$RESET") | |
println(s"${GREEN}Number of detected object : ${detectedObjects.size} in $responseTime$RESET") | |
println(s"${GREEN} look at $generatedBoundedBoxesImagePath$RESET") | |
detectedObjects.sortBy(-_.getProbability).foreach { detectedObject => | |
println(f" $YELLOW$BOLD${detectedObject.getClassName} ${RED} ${detectedObject.getProbability}%1.2f$RESET") | |
} | |
} | |
} | |
} | |
val inputImageSources = | |
1.to(16).toList.map(n => URI.create(f"https://mapland.fr/data/ai/images-samples/example-$n%03d.jpg").toURL) | |
val objectDetectionsArtifacts = | |
ModelZoo | |
.listModels() | |
.asScala | |
.get(Application.CV.OBJECT_DETECTION) | |
.map(_.asScala) | |
.getOrElse(Nil) | |
.toList | |
val results = | |
objectDetectionsArtifacts | |
.map(ModelArtifact.apply) | |
.filterNot(artifactKey => blackListed.contains(artifactKey.ident)) | |
.map(modelArtifact => Try(testModel(modelArtifact, inputImageSources))) | |
.collect{case Success(results) => results} // TODO just ignoring failing models... | |
.flatten | |
showResults(results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment