Last active
May 3, 2025 09:32
-
-
Save dacr/bdae9e6c5a9c47a72d4297b72384df22 to your computer and use it in GitHub Desktop.
Things (objects, people, animals) detection using DJL / published by https://github.com/dacr/code-examples-manager #55ebb071-12a6-4268-b6b2-2a6d835eddab/a2f5e73aa14f79d3255238ec585d60f76ae30e3b
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// summary : Things (objects, people, animals) detection using DJL | |
// keywords : djl, machine-learning, tutorial, detection, ai, @testable | |
// publish : gist | |
// authors : David Crosson | |
// license : Apache NON-AI License Version 2.0 (https://raw.githubusercontent.com/non-ai-licenses/non-ai-licenses/main/NON-AI-APACHE2) | |
// id : 55ebb071-12a6-4268-b6b2-2a6d835eddab | |
// created-on : 2021-03-05T17:40:29Z | |
// managed-by : https://github.com/dacr/code-examples-manager | |
// run-with : scala-cli $file | |
// --------------------- | |
//> using scala "3.4.2" | |
//> using dep "org.slf4j:slf4j-api:2.0.13" | |
//> using dep "org.slf4j:slf4j-simple:2.0.13" | |
//> using dep "net.java.dev.jna:jna:5.14.0" | |
//> using dep "ai.djl:api:0.29.0" | |
//> using dep "ai.djl:basicdataset:0.29.0" | |
//> using dep "ai.djl:model-zoo:0.29.0" | |
//> using dep "ai.djl.huggingface:tokenizers:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-engine:0.29.0" | |
//> using dep "ai.djl.mxnet:mxnet-model-zoo:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-engine:0.29.0" | |
//> using dep "ai.djl.pytorch:pytorch-model-zoo:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-engine:0.29.0" | |
//> using dep "ai.djl.tensorflow:tensorflow-model-zoo:0.29.0" | |
//> using dep "ai.djl.onnxruntime:onnxruntime-engine:0.29.0" | |
// --------------------- | |
// inspired from https://docs.djl.ai/examples/docs/object_detection.html | |
//System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "debug") | |
import ai.djl.Application | |
import ai.djl.engine.Engine | |
import ai.djl.modality.cv.Image | |
import ai.djl.modality.cv.ImageFactory | |
import ai.djl.modality.cv.output.DetectedObjects | |
import ai.djl.modality.cv.output.DetectedObjects.DetectedObject | |
import ai.djl.modality.cv.translator.YoloV8TranslatorFactory | |
import ai.djl.repository.zoo.Criteria | |
import ai.djl.repository.zoo.ModelZoo | |
import ai.djl.repository.zoo.ZooModel | |
import ai.djl.training.util.ProgressBar | |
import java.nio.file.Files | |
import java.nio.file.Path | |
import java.nio.file.Paths | |
import scala.jdk.CollectionConverters.* | |
// ---------------------------------------------------------------------------------------------- | |
def saveBoundingBoxImage(img: Image, detection: DetectedObjects, outputFile: Path): Unit = { | |
val newImage = img.duplicate() | |
newImage.drawBoundingBoxes(detection) | |
import java.nio.file.Files | |
newImage.save(Files.newOutputStream(outputFile), "png") | |
} | |
def basename(filename: String): String = { | |
filename | |
.split("[/](?=[^/]*$)", 2) | |
.last | |
.split("[.]", 2) | |
.head | |
} | |
// ---------------------------------------------------------------------------------------------- | |
val inputImageURL = "https://data.code-examples.org/ai/images-samples/example-016.jpg" | |
val outputDir = Paths.get("build/output") | |
Files.createDirectories(outputDir) | |
val outputImageFile = outputDir.resolve("detected-objects-" + basename(inputImageURL) + ".png") | |
// ---------------------------------------------------------------------------------------------- | |
//val engineName = Engine.getDefaultEngineName() | |
//val engineName = "TensorFlow" | |
//val engineName = "PyTorch" | |
//println(s"Using engine name : $engineName (default is ${Engine.getDefaultEngineName()})") | |
val criteria = | |
Criteria.builder | |
.setTypes(classOf[Image], classOf[DetectedObjects]) | |
.optModelUrls("djl://ai.djl.onnxruntime/yolov8n") | |
.optEngine("OnnxRuntime") | |
//.optApplication(Application.CV.OBJECT_DETECTION) | |
// .optFilters(Map("backbone" -> "mobilenet1.0", "imageSize" -> "416", "dataset" -> "coco").asJava) | |
// .optFilter("backbone", "resnet50") | |
// .optFilter("backbone", "vgg16") | |
//.optFilters(Map("backbone" -> "darknet53", "imageSize" -> "416", "dataset" -> "coco").asJava) | |
// .optFilter("backbone", "mobilenet_v2") // TensorFlow | |
// .optEngine(engineName) | |
// .optEngine("OnnxRuntime") | |
.optArgument("width", 640) | |
.optArgument("height", 640) | |
.optArgument("resize", true) | |
.optArgument("toTensor", true) | |
.optArgument("applyRatio", true) | |
.optArgument("threshold", 0.4f) | |
.optArgument("maxBox", 2000) | |
.optTranslatorFactory(new YoloV8TranslatorFactory()) | |
.optProgress(new ProgressBar) | |
.build | |
val model = ModelZoo.loadModel(criteria) | |
println(s"Using ${model.getName} ${model.getModelPath}") | |
val predictor = model.newPredictor() | |
val img = ImageFactory.getInstance().fromUrl(inputImageURL) | |
val detection: DetectedObjects = predictor.predict(img) | |
println("number of detected object : " + detection.getNumberOfObjects) | |
detection | |
.items() | |
.asScala | |
.toList | |
.asInstanceOf[List[DetectedObject]] | |
.sortBy(_.getProbability) | |
// .filter(_.getProbability > 0.4d) | |
.foreach { ob => | |
println(ob.getClassName + " " + ob.getProbability) | |
} | |
saveBoundingBoxImage(img, detection, outputImageFile) | |
println("images with detected things bounding box saves as " + outputImageFile) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment