Created
February 9, 2019 09:21
-
-
Save daeken/d12ae3045493a6c8c75dcce8cdad756b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.keras import layers | |
from glob import glob | |
batchSize = 100 | |
def toTimeDomain(x): | |
rpart = tf.slice(x, [0, 0], [batchSize, 512 * 9]) | |
ipart = tf.slice(x, [0, 512 * 9], [batchSize, 512 * 9]) | |
complex = tf.complex(rpart, ipart) | |
td = tf.spectral.ifft(complex) | |
return tf.math.real(td) | |
def loadOne(fn): | |
with file(fn, 'rb') as fp: | |
edata = tf.io.decode_raw(fp.read(512 * 9 * 4), tf.float32) | |
idata = tf.io.decode_raw(fp.read(512 * 2 * 2), tf.float32) | |
return idata, edata | |
tf.enable_eager_execution() | |
print 'Loading' | |
inputs = [] | |
outputs = [] | |
for fn in glob('training/*.bin'): | |
i, e = loadOne(fn) | |
inputs.append(i) | |
outputs.append(e) | |
print 'Done loading' | |
model = tf.keras.Sequential() | |
model.add(layers.Dense(2048, activation='tanh')) | |
model.add(layers.Dense(16384, activation='tanh')) | |
model.add(layers.Dense(9216, activation='tanh')) | |
model.add(layers.Lambda(toTimeDomain)) | |
model.compile(optimizer=tf.train.AdamOptimizer(0.01), | |
loss='mae', | |
metrics=['mae'] | |
) | |
dataset = tf.data.Dataset.from_tensor_slices((inputs, outputs)) | |
dataset = dataset.batch(batchSize) | |
dataset = dataset.repeat() | |
model.fit(dataset, epochs=100, steps_per_epoch=20) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment