Created
November 16, 2014 19:45
-
-
Save daemonfire300/158372afcf8ed94783e6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import igraph as ig | |
#from networkx import * | |
f = open('facebook-links.txt.anon', 'r') | |
def largest_graph(cur_graph): | |
if not is_connected(cur_graph): | |
# get a list of unconnected networks | |
sub_graphs = list(connected_component_subgraphs(cur_graph)) | |
main_graph = sub_graphs[0] | |
# find the largest network in that list | |
for sg in sub_graphs: | |
if len(sg.nodes()) > len(main_graph.nodes()): | |
main_graph = sg | |
cur_graph = main_graph | |
else: | |
print("is connected") | |
g = ig.Graph() | |
#nxg = Graph() | |
v_i = 0 | |
v_uniq = set() | |
for line in f: | |
l = line.split('\t') | |
v_start = l[0] | |
v_end = l[1] | |
v_uniq.add(l[0]) | |
v_uniq.add(l[1]) | |
f.seek(0) | |
g.add_vertices(len(v_uniq)) | |
# print(g) | |
edges = list() | |
for line in f: | |
l = line.split('\t') | |
v_start = l[0] | |
v_end = l[1] | |
if not v_start.isdigit() or not v_end.isdigit(): | |
continue | |
v_start = int(l[0]) - 1 | |
v_end = int(l[1]) - 1 | |
edge = (v_start, v_end) | |
v_i += 1 | |
edges.append(edge) | |
#nxg.add_edge(v_start, v_end) | |
g.add_edges(edges) | |
g.simplify() | |
g.to_undirected(mode="mutual") | |
# nxg.add_edges_from(edges) | |
print("k") | |
""" | |
nxg = nxg.to_undirected() | |
#print(len(sorted(connected_component_subgraphs(nxg), key = len, reverse=True)[0].nodes())) | |
# get largest subgraph | |
sgs = sorted(connected_component_subgraphs(nxg), key=len, reverse=True) | |
print(len(sgs)) | |
nxg = sgs[0]""" | |
'''nxg.add_edges_from(sgs[1].edges()) | |
print("s", is_connected(nxg)) | |
nxg.add_edges_from(sgs[1].edges()) | |
print("s", is_connected(nxg)) | |
nxg.add_edges_from(sgs[1].edges()) | |
print("s", is_connected(nxg))''' | |
print("A") | |
#cb = nx.betweenness_centrality(nxg) | |
"""print("|V|", len(nxg) | |
)print("|E|", nxg.size())""" | |
#dia = g.diameter(directed=False, unconn=True) # nxg.size() # diameter(nxg) | |
print("_") | |
#print("Diameter: ", dia) | |
cb = g.betweenness(directed=False) | |
print("_") | |
print("Centrality:", cb[0]) | |
print("max Centrality:", max(cb)) | |
print("_._") | |
g.to_directed(mutual=True) | |
trc = g.triad_census() | |
print("_._") | |
print("Triad Census:", trc["300"]) | |
print("Triad Census:", trc["030C"]) | |
g.simplify() | |
g.to_undirected(mode="mutual") | |
cc = g.transitivity_undirected() | |
print("Clustering Coeff:", cc) | |
''' | |
g.to_undirected(mode="mutual") | |
g.simplify() | |
print("ehm ich glaube ich bin fertig, yolo") | |
ig.summary(g) | |
print("Diameter:", g.diameter(directed=False, unconn=False)) | |
print("Reciprocity:", g.density()) | |
#ecc = g.eccentricity() | |
betweenness = g.betweenness() | |
triads = g.triad_census() | |
print(betweenness[0]) | |
print("done")''' | |
#g.write_svg('graph.svg', width=1920, height=1080) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment