Created
August 23, 2013 06:47
-
-
Save dagit/6316237 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- http://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/chiMing/chiMingChuangExtractionOfProgramsForExactRealNumberComputation.pdf | |
module Real where | |
open import Data.Product renaming (_×_ to _∧_) | |
infixl 9 ─ recip | |
infixl 4 _*_ | |
infixl 3 _+_ _#_ | |
infixl 2 ∣_∣ | |
infix 0 _==_ _≤_ _<_ | |
postulate | |
ℝ : Set | |
0ʳ : ℝ | |
1ʳ : ℝ | |
_==_ : ℝ → ℝ → Set {- equality -} | |
_<_ : ℝ → ℝ → Set {- less than -} | |
_≤_ : ℝ → ℝ → Set {- less than or equal -} | |
─ : ℝ → ℝ {- negate -} | |
_#_ : ℝ → ℝ → Set {- different -} | |
_+_ : ℝ → ℝ → ℝ {- addition -} | |
_*_ : ℝ → ℝ → ℝ {- multiplication -} | |
∣_∣ : ℝ → ℝ {- absolute value -} | |
recip : (r : ℝ) → 0ʳ # r → ℝ {- multi. inverse -} | |
0<1 : 0ʳ < 1ʳ | |
─0 : ─ 0ʳ == 0ʳ | |
──x=x : {r : ℝ} → ─(─ r) == r | |
─R<0 : {r : ℝ} → 0ʳ < r → ─ r < 0ʳ | |
refl== : {r : ℝ} → r == r | |
symm== : {r s : ℝ} → r == s → s == r | |
trans== : {r s t : ℝ} → r == s → s == t → r == t | |
abs0 : ∣ 0ʳ ∣ == 0ʳ | |
0≤∣x∣ : {r : ℝ} → 0ʳ ≤ ∣ r ∣ | |
∣─x∣=∣x∣ : {r : ℝ} → ∣ ─ r ∣ == ∣ r ∣ | |
∣xy∣=∣x∣∣y∣ : {r s : ℝ} → ∣ r * s ∣ == ∣ r ∣ * ∣ s ∣ | |
r∈[─n,n]→∣r∣≤n : {r s : ℝ} → (─ s ≤ r) ∧ (r ≤ s) → ∣ r ∣ ≤ s | |
#less : {r s : ℝ} → r < s → r # s | |
#symm : {r s : ℝ} → r # s → s # r | |
0#sr : {r s : ℝ} → 0ʳ # r → 0ʳ # s → 0ʳ # r * s | |
trans≤ : {r s t : ℝ} → r ≤ s → s ≤ t → r ≤ t | |
a≤b< : {r s : ℝ} → r < s → r ≤ s | |
a≤b= : {r s : ℝ} → r == s → r ≤ s | |
a≤b→b<c→a<c : {r s t : ℝ} → r ≤ s → s < t → r < t | |
a<b→b≤c→a<c : {r s t : ℝ} → r < s → s ≤ t → r < t | |
axiom+0 : {r : ℝ} → r + 0ʳ == r | |
symm+ : {r s : ℝ} → r + s == s + r | |
assoc+ : {r s t : ℝ} → r + (s + t) == (r + s) + t | |
minus+ : {r s : ℝ} → ─(r + s) == (─ r) + (─ s) | |
axiomx─x : {r : ℝ} → r + (─ r) == 0ʳ | |
axiom*0 : {r : ℝ} → r * 0ʳ == 0ʳ | |
axiom*1 : {r : ℝ} → r * 1ʳ == r | |
a*─b=─ab : {r s : ℝ} → r * ─ s == ─ (r * s) | |
symm* : {r s : ℝ} → r * s == s * r | |
assoc* : {r s t : ℝ} → r * (s * t) == (r * s) * t | |
distri* : {r s t : ℝ} → r * (s + t) == r * s + r * t | |
0<recip : {r : ℝ} → 0ʳ < r → (p : 0ʳ # r) → 0ʳ < recip r p | |
recip<0 : {r : ℝ} → r < 0ʳ → (p : 0ʳ # r) → recip r p < 0ʳ | |
aa⁻¹=1 : {r : ℝ} → (p : 0ʳ # r) → (r * recip r p) == 1ʳ | |
x<y→1/y<1/x : {r s : ℝ} → (p : 0ʳ # r) → (p′ : 0ʳ # s) → r < s | |
→ recip s p′ < recip r p | |
recipxy=recipx*recipy : {r s : ℝ} → (prs : 0ʳ # r * s) | |
→ (p : 0ʳ # r) → (p′ : 0ʳ # s) | |
→ recip (r * s) prs == recip r p * recip s p′ | |
recip== : {r s : ℝ} → (p : 0ʳ # r) → (p′ : 0ʳ # s) | |
→ r == s | |
→ recip r p == recip s p′ | |
axiom<+ : {r s t : ℝ} → r < s → r + t < s + t | |
axiom≤+ : {r s t : ℝ} → r ≤ s → r + t ≤ s + t | |
axiom<* : {r s t : ℝ} → r < s → 0ʳ < t → r * t < s * t | |
c≤0→a≤b→ac≤bc : {r s t : ℝ} → 0ʳ ≤ t → r ≤ s → r * t ≤ s * t | |
transfer== : {P : ℝ → Set} → {r s : ℝ} → r == s → P r → P s | |
-- Some example numbers | |
2ʳ = 1ʳ + 1ʳ | |
3ʳ = 2ʳ + 1ʳ | |
4ʳ = 3ʳ + 1ʳ | |
5ʳ = 4ʳ + 1ʳ | |
6ʳ = 5ʳ + 1ʳ | |
7ʳ = 6ʳ + 1ʳ | |
8ʳ = 7ʳ + 1ʳ | |
9ʳ = 8ʳ + 1ʳ | |
─1ʳ = ─ 1ʳ | |
─2ʳ = ─ 2ʳ | |
─3ʳ = ─ 3ʳ | |
─4ʳ = ─ 4ʳ | |
─5ʳ = ─ 5ʳ | |
─6ʳ = ─ 6ʳ | |
─7ʳ = ─ 7ʳ | |
─8ʳ = ─ 8ʳ | |
─9ʳ = ─ 9ʳ | |
_-_ : ℝ → ℝ → ℝ | |
i - j = i + ─ j | |
postulate | |
triangle : {r s t : ℝ} → ∣ r - s ∣ ≤ ∣ r - t ∣ + ∣ t - s ∣ | |
data Q : ℝ → Set where | |
close0 : Q 0ʳ | |
close1 : Q 1ʳ | |
close─ : {r : ℝ} → Q r → Q (─ r) | |
close+ : {r s : ℝ} → Q r → Q s → Q (r + s) | |
close* : {r s : ℝ} → Q r → Q s → Q (r * s) | |
closerecip : {r : ℝ} → (p : 0ʳ # r) → Q r → Q (recip r p) | |
open import Data.Nat using (ℕ; suc) | |
open import Data.Integer using (ℤ; +_; -[1+_]) | |
open import Relation.Binary.PropositionalEquality using (_≡_; refl) | |
{- | |
-- TODO: this axiom might be nice | |
thing : (r s : ℝ) → r == s → r ≡ s | |
thing r s reflᵣ = {!!} | |
-} | |
transfer==₂ : {P : ℝ → ℝ → Set} → {r s x y : ℝ} → r == s → x == y → P r x → P s y | |
transfer==₂ {_} {_} {s} {x} p₁ p₂ prx = transfer== p₂ (transfer== p₁ prx) | |
trans< : {r s t : ℝ} → r < s → s < t → r < t | |
trans< p₁ p₂ = a<b→b≤c→a<c p₁ (a≤b< p₂) | |
symm+0 : {r : ℝ} → 0ʳ + r == r | |
symm+0 = trans== (symm== symm+) axiom+0 | |
0+n<1+n : {r : ℝ} → 0ʳ + r < 1ʳ + r | |
0+n<1+n = axiom<+ 0<1 | |
n<n+1 : {r : ℝ} → r < r + 1ʳ | |
n<n+1 = transfer==₂ {_<_} symm+0 symm+ 0+n<1+n | |
1<2 : 1ʳ < 2ʳ | |
1<2 = n<n+1 | |
0<2 : 0ʳ < 2ʳ | |
0<2 = trans< 0<1 1<2 | |
{- Exponential functions of ℝ -} | |
exp : (r : ℝ) → (0ʳ # r) → ℤ → ℝ | |
exp x p (+ (suc 0)) = x | |
exp x p (+ (suc n)) = exp x p (+ n) * x | |
exp x p (-[1+ 0 ]) = recip x p | |
exp x p (-[1+ (suc n) ]) = exp x p -[1+ n ] * recip x p | |
exp x p (+ 0) = 1ʳ | |
2^ : ℤ → ℝ {- 2^ n = 2ⁿ -} | |
2^ n = exp 2ʳ p n | |
where | |
p : 0ʳ # 2ʳ | |
p = #less 0<2 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment