Created
March 3, 2020 17:34
-
-
Save daguiam/f91addb2dba0e0917a7b6cd358a9c7ab to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def interpolate_scandata_2d(x,y,z, fast_axis=0, min_signal_size=500, points=100, filter_positive=False, center_to_peak=False, normalize=False): | |
if fast_axis == 0: | |
vector = x | |
else: | |
vector = y | |
# consider only the positive direction of the x values | |
if filter_positive: | |
positive_x_index = np.where(np.sign(np.append(0,np.diff(vector)))>0) | |
x = x[positive_x_index] | |
y = y[positive_x_index] | |
z = z[positive_x_index] | |
# center x and y to the maximum peak | |
if center_to_peak: | |
print("Centering xy to peak") | |
peak_z_idx = np.argmax(z) | |
peak_x = x[peak_z_idx] | |
peak_y = y[peak_z_idx] | |
x = x-peak_x | |
y = y-peak_y | |
if normalize: | |
z = z/z.max() | |
# Find uniques on the slow axis | |
if fast_axis == 0: | |
vector = y | |
else: | |
vector = x | |
_,indexes_inverse = np.unique(vector, return_inverse=True) | |
_,indexes_start = np.unique(vector, return_index=True) | |
_,counts = np.unique(vector, return_counts=True) | |
indexes_start = indexes_start[np.where(counts>min_signal_size)] | |
split_x = np.split(x, indexes_start) | |
split_y = np.split(y, indexes_start) | |
split_z = np.split(z, indexes_start) | |
split_x = split_x[1:] | |
split_y = split_y[1:] | |
split_z = split_z[1:] | |
if fast_axis == 0: | |
split = split_x | |
else: | |
split = split_y | |
bound_min, bound_max = find_bounds(split) | |
linear = np.linspace(bound_min, bound_max, points) | |
new_x = [] | |
new_y = [] | |
new_z = [] | |
for i, (aux_x, aux_y, aux_z) in enumerate(zip(split_x, split_y, split_z)): | |
if fast_axis == 0: | |
vector = aux_x | |
z_func = interpolate.interp1d(vector, aux_z) | |
aux_y = np.ones(points)*aux_y[0] | |
new_x.append(np.array(linear)) | |
new_y.append(np.array(aux_y)) | |
else: | |
vector = aux_y | |
z_func = interpolate.interp1d(vector, aux_z) | |
aux_x = np.ones(points)*aux_x[0] | |
new_x.append(np.array(aux_x)) | |
new_y.append(np.array(linear)) | |
interpz = z_func(linear) | |
new_z.append(interpz) | |
new_x = np.array(new_x) | |
new_y = np.array(new_y) | |
new_z = np.array(new_z) | |
return new_x, new_y, new_z |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment