Created
August 16, 2020 20:21
-
-
Save daig/87e3277e4702ca1dbf0cd6182d280b73 to your computer and use it in GitHub Desktop.
Understanding function extensionality
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- {-# OPTIONS --cubical #-} | |
module cats where | |
import Relation.Binary.PropositionalEquality as Eq | |
open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst) | |
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) | |
open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) | |
-- open import Cubical.Core.Everything | |
-- open import Cubical.Foundations.Prelude | |
variable ℓ ℓ1 ℓ2 ℓ3 : Level | |
postulate | |
extensionality : {A : Set ℓ1} {B : Set ℓ2} {f g : A → B} | |
→ ( (x : A) → f x ≡ g x) → f ≡ g | |
record Cat ℓ : Set (lsuc ℓ) where | |
field | |
Obj : Set ℓ | |
Hom : Obj → Obj → Set ℓ | |
ι : (x : Obj) → Hom x x | |
o : {x y z : Obj} → Hom y z → Hom x y → Hom x z | |
ι∘ : {x y : Obj} (f : Hom x y) → o (ι y) f ≡ f | |
∘ι : {x y : Obj} (f : Hom x y) → o f (ι x) ≡ f | |
∘assoc : {a b c d : Obj} (f : Hom a b) (g : Hom b c) (h : Hom c d) | |
→ o h (o g f) ≡ o (o h g) f | |
open Cat | |
record Functor (𝒞 : Cat ℓ1) (𝒟 : Cat ℓ2) : Set (ℓ1 ⊔ ℓ2) where | |
field | |
F₀ : Obj 𝒞 → Obj 𝒟 | |
F₁ : {x y : Obj 𝒞} → Hom 𝒞 x y → Hom 𝒟 (F₀ x) (F₀ y) | |
Fι : (x : Obj 𝒞) → F₁ (ι 𝒞 x) ≡ ι 𝒟 (F₀ x) | |
F∘ : {x y z : Obj 𝒞} (f : Hom 𝒞 y z) (g : Hom 𝒞 x y) → F₁ (o 𝒞 f g) ≡ o 𝒟 (F₁ f) (F₁ g) | |
Fι₁ Fι₀ : (x : Obj 𝒞) → Hom 𝒟 (F₀ x) (F₀ x) | |
Fι₁ x = F₁ (ι 𝒞 x) | |
Fι₀ x = ι 𝒟 (F₀ x) | |
ExtFι : (λ x → F₁ (ι 𝒞 x)) ≡ (λ x → ι 𝒟 (F₀ x)) | |
ExtFι = extensionality Fι | |
open Functor | |
-- Cannot instantiate the metavariable _138 to solution | |
-- Hom 𝒟 (F₀ x) (F₀ x) since it contains the variable x | |
-- which is not in scope of the metavariable | |
-- when checking that the inferred type of an application | |
-- _f_139 ≡ _g_140 | |
-- matches the expected type | |
-- (λ x → F₁ (ι 𝒞 x)) ≡ (λ x → ι 𝒟 (F₀ x)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment