Created
January 22, 2014 14:26
-
-
Save daisukekobayashi/8559562 to your computer and use it in GitHub Desktop.
Rotation invariant phase-only correlation in python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python | |
# -*- coding: utf-8 | |
import sys | |
import numpy | |
from numpy import pi, sin, cos | |
from scipy.optimize import leastsq | |
import scipy, scipy.fftpack | |
import cv2 | |
import cv2.cv as cv | |
import matplotlib.pyplot as plt | |
def logpolar(src, center, magnitude_scale = 40): | |
mat1 = cv.fromarray(numpy.float64(src)) | |
mat2 = cv.CreateMat(src.shape[0], src.shape[1], mat1.type) | |
cv.LogPolar(mat1, mat2, center, magnitude_scale, \ | |
cv.CV_INTER_CUBIC+cv.CV_WARP_FILL_OUTLIERS) | |
return numpy.asarray(mat2) | |
def zero_padding(src, dstshape, pos = (0, 0)): | |
y, x = pos | |
dst = numpy.zeros(dstshape) | |
dst[y:src.shape[0] + y, x:src.shape[1] + x] = src | |
return dst | |
def pocfunc_model(alpha, delta1, delta2, r, u): | |
N1, N2 = r.shape | |
V1, V2 = map(lambda x: 2 * x + 1, u) | |
return lambda n1, n2: alpha / (N1 * N2) * sin((n1 + delta1) * V1 / N1 * pi) * sin((n2 + delta2) * V2 / N2 * pi)\ | |
/ (sin((n1 + delta1) * pi / N1) * sin((n2 + delta2) * pi / N2)) | |
def pocfunc(f, g, windowfunc = numpy.hanning, withlpf = False): | |
m = numpy.floor(map(lambda x: x / 2.0, f.shape)) | |
u = map(lambda x: x / 2.0, m) | |
# hanning window | |
hy = windowfunc(f.shape[0]) | |
hx = windowfunc(f.shape[1]) | |
hw = hy.reshape(hy.shape[0], 1) * hx | |
f = f * hw | |
g = g * hw | |
# compute 2d fft | |
F = scipy.fftpack.fft2(f) | |
G = scipy.fftpack.fft2(g) | |
G_ = numpy.conj(G) | |
R = F * G_ / numpy.abs(F * G_) | |
if withlpf == True: | |
R = scipy.fftpack.fftshift(R) | |
lpf = numpy.ones(map(lambda x: x + 1.0, m)) | |
lpf = zero_padding(lpf, f.shape, u) | |
R = R * lpf | |
R = scipy.fftpack.fftshift(R) | |
return scipy.fftpack.fftshift(numpy.real(scipy.fftpack.ifft2(R))) | |
def poc(f, g, fitting_shape = (9, 9)): | |
# compute phase-only correlation | |
center = map(lambda x: x / 2.0, f.shape) | |
m = numpy.floor(map(lambda x: x / 2.0, f.shape)) | |
u = map(lambda x: x / 2.0, m) | |
r = pocfunc(f, g) | |
# least-square fitting | |
max_pos = numpy.argmax(r) | |
peak = (max_pos / f.shape[1], max_pos % f.shape[1]) | |
max_peak = r[peak[0], peak[1]] | |
mf = numpy.floor(map(lambda x: x / 2.0, fitting_shape)) | |
fitting_area = r[peak[0] - mf[0] : peak[0] + mf[0] + 1,\ | |
peak[1] - mf[1] : peak[1] + mf[1] + 1] | |
p0 = [0.5, -(peak[0] - m[0]) - 0.02, -(peak[1] - m[1]) - 0.02] | |
y, x = numpy.mgrid[-mf[0]:mf[0] + 1, -mf[1]:mf[1] + 1] | |
y = y + peak[0] - m[0] | |
x = x + peak[1] - m[1] | |
errorfunction = lambda p: numpy.ravel(pocfunc_model(p[0], p[1], p[2], r, u)(y, x) - fitting_area) | |
plsq = leastsq(errorfunction, p0) | |
return (plsq[0][0], plsq[0][1], plsq[0][2]) | |
def ripoc(f, g, M = 50, fitting_shape = (9, 9)): | |
hy = numpy.hanning(f.shape[0]) | |
hx = numpy.hanning(f.shape[1]) | |
hw = hy.reshape(hy.shape[0], 1) * hx | |
ff = f * hw | |
gg = g * hw | |
F = scipy.fftpack.fft2(ff) | |
G = scipy.fftpack.fft2(gg) | |
F = scipy.fftpack.fftshift(numpy.log(numpy.abs(F))) | |
G = scipy.fftpack.fftshift(numpy.log(numpy.abs(G))) | |
FLP = logpolar(F, (F.shape[0] / 2, F.shape[1] / 2), M) | |
GLP = logpolar(G, (G.shape[0] / 2, G.shape[1] / 2), M) | |
R = poc(FLP, GLP) | |
angle = -R[1] / F.shape[0] * 360 | |
scale = 1.0 - R[2] / 100 | |
center = tuple(numpy.array(g.shape) / 2) | |
rot = cv2.getRotationMatrix2D(center, -angle, 1.0 + (1.0 - scale)) | |
g_dash = cv2.warpAffine(g, rot, (g.shape[1], g.shape[0]), flags=cv2.INTER_LANCZOS4) | |
t = poc(f, g_dash) | |
return (t[1], t[2], angle, scale) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment