Last active
May 5, 2019 23:42
-
-
Save dalejbarr/26aa69cddde0100ac6087c9c0da2b919 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library("shiny") | |
library("ggplot2") | |
n_obs <- 500L | |
## Define UI for application that draws a histogram | |
ui <- fluidPage( | |
## Application title | |
titlePanel("Visualizing Raw Data vs Residuals"), | |
## Sidebar with a slider input for number of bins | |
sidebarLayout( | |
sidebarPanel( | |
sliderInput("subj_a", | |
"Mean RT for Subject A:", | |
min = 500, | |
max = 900, | |
value = 600), | |
sliderInput("subj_b", | |
"Mean RT for Subject B:", | |
min = 500, | |
max = 900, | |
value = 650), | |
sliderInput("subj_c", | |
"Mean RT for Subject C:", | |
min = 500, | |
max = 900, | |
value = 700), | |
sliderInput("subj_d", | |
"Mean RT for Subject D:", | |
min = 500, | |
max = 900, | |
value = 750), | |
sliderInput("subj_e", | |
"Mean RT for Subject E:", | |
min = 500, | |
max = 900, | |
value = 800), | |
hr(), | |
checkboxInput("reveal", "Reveal subject distributions"), | |
actionButton("resample", "New Sample") | |
), | |
## Show a plot of the generated distribution | |
mainPanel( | |
plotOutput("distPlot"), | |
textOutput("sw_raw"), | |
hr(), | |
plotOutput("residPlot"), | |
textOutput("sw_resid") | |
) | |
) | |
) | |
## Define server logic required to draw a histogram | |
server <- function(input, output) { | |
dat <- reactive({ | |
input$resample | |
means <- c(input$subj_a, input$subj_b, input$subj_c, | |
input$subj_d, input$subj_e) | |
d1 <- data.frame(subject = rep(LETTERS[1:5], each = n_obs), | |
s_i = rep(means, each = n_obs), | |
e_ij = rnorm(n_obs * 5L, mean = 0, sd = 50)) | |
d1$y_ij = d1$s_i + d1$e_ij | |
d1 | |
}) | |
output$distPlot <- renderPlot({ | |
## generate bins based on input$bins from ui.R | |
if (input$reveal) { | |
ggplot(dat(), aes(y_ij, fill = subject)) + | |
geom_histogram(alpha = .2) + | |
ggtitle("Raw Data") | |
} else { | |
ggplot(dat(), aes(y_ij)) + geom_histogram() + | |
ggtitle("Raw Data") | |
} | |
}) | |
output$residPlot <- renderPlot({ | |
ggplot(dat(), aes(e_ij)) + geom_histogram() + | |
ggtitle("Residuals") | |
}) | |
output$sw_raw <- renderPrint({ | |
`(raw data)` <- dat()[["y_ij"]] | |
shapiro.test(`(raw data)`) | |
}) | |
output$sw_resid <- renderPrint({ | |
`(residuals)` <- dat()[["e_ij"]] | |
shapiro.test(`(residuals)`) | |
}) | |
} | |
## Run the application | |
shinyApp(ui = ui, server = server) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment