Last active
February 13, 2019 17:19
-
-
Save dalequark/0c7084724cf6cf94d1abc46eb2bd371b to your computer and use it in GitHub Desktop.
Download Movie Review
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow import keras | |
import os | |
import re | |
# Load all files from a directory in a DataFrame. | |
def load_directory_data(directory): | |
data = {} | |
data["sentence"] = [] | |
data["sentiment"] = [] | |
for file_path in os.listdir(directory): | |
with tf.gfile.GFile(os.path.join(directory, file_path), "r") as f: | |
data["sentence"].append(f.read()) | |
data["sentiment"].append(re.match("\d+_(\d+)\.txt", file_path).group(1)) | |
return pd.DataFrame.from_dict(data) | |
# Merge positive and negative examples, add a polarity column and shuffle. | |
def load_dataset(directory): | |
pos_df = load_directory_data(os.path.join(directory, "pos")) | |
neg_df = load_directory_data(os.path.join(directory, "neg")) | |
pos_df["polarity"] = 1 | |
neg_df["polarity"] = 0 | |
return pd.concat([pos_df, neg_df]).sample(frac=1).reset_index(drop=True) | |
# Download and process the dataset files. | |
def download_and_load_datasets(force_download=False): | |
dataset = tf.keras.utils.get_file( | |
fname="aclImdb.tar.gz", | |
origin="http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz", | |
extract=True) | |
train_df = load_dataset(os.path.join(os.path.dirname(dataset), | |
"aclImdb", "train")) | |
test_df = load_dataset(os.path.join(os.path.dirname(dataset), | |
"aclImdb", "test")) | |
return train_df, test_df | |
train, test = download_and_load_datasets() | |
# Downsample so our model trains faster | |
train = train.sample(5000) | |
test = test.sample(5000) | |
# Our input data is stored in DATA_COLUMN; it's sentiment label | |
# is stored in LABEL_COLUMN as a 0 or 1 | |
DATA_COLUMN = 'sentence' | |
LABEL_COLUMN = 'polarity' | |
# label_list is the list of labels, i.e. True, False or 0, 1 or 'dog', 'cat' | |
label_list = [0, 1] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment