Last active
February 13, 2019 17:22
-
-
Save dalequark/c29ed85039d4446dbd4c8204113248bb to your computer and use it in GitHub Desktop.
Create Tokenizer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# This is a path to an uncased (all lowercase) version of BERT | |
BERT_MODEL_HUB = "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1" | |
def create_tokenizer_from_hub_module(): | |
"""Get the vocab file and casing info from the Hub module.""" | |
with tf.Graph().as_default(): | |
bert_module = hub.Module(BERT_MODEL_HUB) | |
tokenization_info = bert_module(signature="tokenization_info", as_dict=True) | |
with tf.Session() as sess: | |
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"], | |
tokenization_info["do_lower_case"]]) | |
return bert.tokenization.FullTokenizer( | |
vocab_file=vocab_file, do_lower_case=do_lower_case) | |
tokenizer = create_tokenizer_from_hub_module() | |
# We'll set sequences to be at most 128 tokens long. | |
MAX_SEQ_LENGTH = 128 | |
# Convert our train and test features to InputFeatures that BERT understands. | |
train_features = bert.run_classifier.convert_examples_to_features(train_InputExamples, label_list, MAX_SEQ_LENGTH, tokenizer) | |
test_features = bert.run_classifier.convert_examples_to_features(test_InputExamples, label_list, MAX_SEQ_LENGTH, tokenizer) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment