Skip to content

Instantly share code, notes, and snippets.

@damienpontifex
Last active March 9, 2021 09:43
Show Gist options
  • Save damienpontifex/1f03b966d36049b678efdddb54cef4eb to your computer and use it in GitHub Desktop.
Save damienpontifex/1f03b966d36049b678efdddb54cef4eb to your computer and use it in GitHub Desktop.
A template for a custom tensorflow estimator and experiment with python3 typings for desired parameter types
import argparse
import psutil
import tensorflow as tf
from typing import Dict, Any, Callable, Tuple
## Data Input Function
def data_input_fn(data_param,
batch_size:int=None,
shuffle=False) -> Callable[[], Tuple]:
"""Return the input function to get the test data.
Args:
data_param: data object
batch_size (int): Batch size of training iterator that is returned
by the input function.
Returns:
Input function:
- Function that returns (features, labels) when called.
"""
_cpu_core_count = psutil.cpu_count(logical=False)
def _input_fn() -> Tuple:
"""Returns training set as Operations.
Returns:
(features, labels) Operations that iterate over the dataset
on every evaluation
"""
def map_record(record):
return record
dataset = tf.contrib.data.Dataset.from_tensor_slices(data_param)
dataset = dataset.map(map_record, output_buffer_size=batch_size, num_threads=_cpu_core_count)
if shuffle:
# Shuffle the input unless we are predicting
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.repeat(None) # Infinite iterations: let experiment determine num_epochs
dataset = dataset.batch(batch_size)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
return _input_fn
## Model
def model(features: Dict[str, tf.Tensor], mode: tf.estimator.ModeKeys, params: Dict[str, Any]):
is_training = mode == tf.estimator.ModeKeys.TRAIN
# Setup model architecture
# Enable training of mode == tf.contrib.learn.ModeKeys.TRAIN
with tf.variable_scope('Input'):
input_layer = tf.reshape(
features,
shape=[1, 1, 1],
name='input_reshape')
with tf.name_scope('Dense1'):
model_output = tf.layers.dense(
inputs=input_layer,
units=10,
trainable=is_training)
return model_output
## Model Function
# Have to remove type annotations until https://github.com/tensorflow/tensorflow/issues/12249
def custom_model_fn(features: Dict[str, tf.Tensor],
labels: tf.Tensor,
mode: tf.estimator.ModeKeys,
params: Dict[str, Any]=None) -> tf.estimator.EstimatorSpec:
"""Model function used in the estimator.
Args:
features (Tensor): Input features to the model.
labels (Tensor): Labels tensor for training and evaluation.
mode (ModeKeys): Specifies if training, evaluation or prediction.
params (HParams): hyperparameters.
Returns:
(EstimatorSpec): Model to be run by Estimator.
"""
model_output = model(features, mode, params)
# Get prediction of model output
predictions = {
'classes': tf.argmax(model_output),
'probabilities': tf.nn.softmax(model_output, name='softmax_tensor')
}
# PREDICT
if mode == tf.estimator.ModeKeys.PREDICT:
export_outputs = {
'predict_output': tf.estimator.export.PredictOutput(predictions)
}
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, export_outputs=export_outputs)
loss = tf.losses.softmax_cross_entropy(
labels=tf.cast(labels, tf.int32),
logits=model_output
)
# Configure the Training Op (for TRAIN mode)
if mode == tf.contrib.learn.ModeKeys.TRAIN:
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=params.learning_rate,
optimizer=tf.train.AdamOptimizer
)
# Return an EstimatorSpec object for training
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, loss=loss, train_op=train_op)
eval_metric = {
'accuracy': tf.metrics.accuracy(
labels=tf.cast(labels, tf.int32),
predictions=model_output,
name='accuracy'
)
}
# Return a EstimatorSpec object for evaluation
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, loss=loss, eval_metric_ops=eval_metric)
## Data accessors
def get_train() -> Callable[[], Tuple]:
"""Return training input_fn"""
return data_input_fn('train', batch_size=100, shuffle=True)
def get_validation() -> Callable[[], Tuple]:
"""Return validation input_fn"""
return data_input_fn('validation', batch_size=100)
## Experiment
def experiment_fn(run_config:tf.estimator.RunConfig,
hparams:tf.contrib.training.HParams) -> tf.contrib.learn.Experiment:
"""Create an experiment to train and evaluate the model.
Args:
run_config (RunConfig): Configuration for Estimator run.
params (HParam): Hyperparameters
Returns:
(Experiment) Experiment for training the mnist model.
"""
estimator = tf.contrib.learn.Estimator(model_fn=custom_model_fn,
config=run_config,
hparams=hparams)
return tf.contrib.learn.Experiment(estimator,
train_input_fn=get_train(),
eval_input_fn=get_validation(),
train_steps=hparams.train_steps,
eval_steps=hparams.eval_steps)
def run_experiment(args):
"""Main entrypoint to run the experiment"""
# Define model parameters
params = tf.contrib.training.HParams(
learning_rate=0.002,
train_steps=5000,
eval_steps=1,
min_eval_frequency=100
)
# Set the run_config and the directory to save the model and stats
run_config = tf.contrib.learn.RunConfig()
run_config = run_config.replace(model_dir=args.model_dir)
schedule = 'train_and_evaluate'
if args.train and args.evaluate:
schedule = 'train_and_evaluate'
elif args.train:
schedule = 'train'
elif args.evaluate:
schedule = 'evaluate'
# learn_runner will also pick up environment config...say your were running on CloudML
tf.contrib.learn.learn_runner.run(
experiment_fn=experiment_fn,
run_config=run_config,
schedule=schedule,
hparams=params
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run TF Experiment')
parser.add_argument('--model-dir', default='./model', help='directory where checkpoints and logs will be stored')
parser.add_argument('--data-dir', default='./data', help='directory where data is loaded or stored')
parser.add_argument('--train', action='store_true', help='Should run training. Will run train_and_evaluate by default')
parser.add_argument('--evaluate', action='store_true', help='Should run evaluate. Will run train_and_evaluate by default')
args = parser.parse_args()
# TODO: Ensure any appropriate data is downloaded so the data input_fn can use
run_experiment(args)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment