Last active
November 29, 2021 17:09
-
-
Save danaj/4385784 to your computer and use it in GitHub Desktop.
Prime counting utility using primesieve (http://code.google.com/p/primesieve/). Includes counting via sieve, Legendre, Meissel, and Lehmer methods. Part of the Math::Prime::Util Perl module (https://github.com/danaj/Math-Prime-Util). All code is in C, but primesieve makes a C++ library, hence the C++ compilation.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <stdlib.h> | |
#include <string.h> | |
#include <math.h> | |
/* Below this size, just sieve. */ | |
#define SIEVE_LIMIT 1000000 | |
/***************************************************************************** | |
* | |
* Lehmer prime counting utility. Calculates pi(x), count of primes <= x. | |
* | |
* Copyright (c) 2012-2013 Dana Jacobsen ([email protected]). | |
* This is free software; you can redistribute it and/or modify it under | |
* the same terms as the Perl 5 programming language system itself. | |
* | |
* This file is part of the Math::Prime::Util Perl module, but also can be | |
* compiled as a standalone UNIX program using the primesieve package. | |
* | |
* g++ -O3 -DPRIMESIEVE_STANDALONE lehmer.c -o prime_count -lprimesieve | |
* | |
* For faster prime counting in stage 4 with multiprocessor machines: | |
* | |
* g++ -O3 -DPRIMESIEVE_STANDALONE -DPRIMESIEVE_PARALLEL lehmer.c -o prime_count -lprimesieve -lgomp | |
* | |
* The phi(x,a) calculation is unique, to the best of my knowledge. It uses | |
* two lists of all x values + signed counts for the given 'a' value, and walks | |
* 'a' down until it is small enough to calculate directly (either with Mapes | |
* or using a calculated table using the primorial/totient method). This | |
* is relatively fast and low memory compared to many other solutions. As with | |
* all Lehmer-Meissel-Legendre algorithms, memory use will be a constraint | |
* with large values of x (see the table below). | |
* | |
* If you want something better, I highly recommend the paper "Computing | |
* Pi(x): the combinatorial method" (2006) by Tomás Oliveira e Silva. His | |
* implementation is certainly much faster and lower memory than this, but I | |
* have not seen any working source code for one of the LMO methods so it is | |
* difficult to compare. | |
* | |
* Using my sieve code with everything running in serial, calculating pi(10^12) | |
* is done under 1 second on my computer. pi(10^14) takes under 30 seconds, | |
* pi(10^16) in under 20 minutes. Compared with Thomas R. Nicely's pix4 | |
* program, this one is 5x faster and uses 10x less memory. When compiled | |
* with parallel primesieve it is over 10x faster. | |
* pix4(10^16) takes 124 minutes, this code + primesieve takes < 4 minutes. | |
* | |
* Timings with Perl + MPU with all-serial computation. Using the standalone | |
* program with parallel primesieve speeds up stage 4 a lot for large values. | |
* The last column is the standalone time with 12-core parallel primesieve. | |
* | |
* n phi(x,a) mem/time | stage 4 mem/time | total time | pps time | |
* 10^19 1979.41 | ~13GB | | 7h 26m | |
* 10^18 5515MB 483.46 | 5390MB | | 87m 0s | |
* 10^17 1698MB 109.56 | 1568MB 9684.1 | 163m 36 s | 17m 37s | |
* 10^16 522MB 25.44 | 460MB 1066.3 | 18m 12 s | 3m 44s | |
* 10^15 159MB 5.86 | 137MB 141.2 | 2m 28 s | 48.17 s | |
* 10^14 48MB 1.34 | 41MB 22.55 | 23.58 s | 10.55 s | |
* 10^13 14MB 0.304 | 12MB 3.87 | 4.16 s | 2.40 s | |
* 10^12 4MB 0.070 | 4MB 0.716 | 0.78 s | 0.527 | |
* 10^11 1MB 0.015 | 0.135 | 0.158s | 0.124s | |
* 10^10 0.003 | 0.029 | 0.028s | 0.036s | |
* | |
* Reference: Hans Riesel, "Prime Numbers and Computer Methods for | |
* Factorization", 2nd edition, 1994. | |
*/ | |
static int const verbose = 0; | |
/* #define STAGE_TIMING 1 */ | |
#ifdef STAGE_TIMING | |
#include <sys/time.h> | |
#define DECLARE_TIMING_VARIABLES struct timeval t0, t1; | |
#define TIMING_START gettimeofday(&t0, 0); | |
#define TIMING_END_PRINT(text) \ | |
{ unsigned long long t; \ | |
gettimeofday(&t1, 0); \ | |
t = (t1.tv_sec-t0.tv_sec) * 1000000 + (t1.tv_usec - t0.tv_usec); \ | |
printf("%s: %10.5f\n", text, ((double)t) / 1000000); } | |
#else | |
#define DECLARE_TIMING_VARIABLES | |
#define TIMING_START | |
#define TIMING_END_PRINT(text) | |
#endif | |
#ifdef PRIMESIEVE_STANDALONE | |
/* countPrimes seems to be pretty slow for small ranges, so sieve more small | |
* primes and count using binary search. Uses a lot of memory though. For | |
* big ranges, countPrimes is really fast. */ | |
#define SIEVE_MULT 10 | |
#include <limits.h> | |
#include <sys/time.h> | |
#ifdef PRIMESIEVE_PARALLEL | |
#include <primesieve/soe/ParallelPrimeSieve.h> | |
ParallelPrimeSieve ps; | |
#define SET_PPS_PARALLEL ps.setNumThreads(ParallelPrimeSieve::getMaxThreads()) | |
#define SET_PPS_SERIAL ps.setNumThreads(1) | |
#else | |
#include <primesieve/soe/PrimeSieve.h> | |
PrimeSieve ps; | |
#define SET_PPS_PARALLEL /* */ | |
#define SET_PPS_SERIAL /* */ | |
#endif | |
/* Translations from Perl + Math::Prime::Util to C/C++ + primesieve */ | |
typedef unsigned long UV; | |
typedef signed long IV; | |
#define UV_MAX ULONG_MAX | |
#define UVCONST(x) ((unsigned long)x##UL) | |
#define New(id, mem, size, type) mem = (type*) malloc((size)*sizeof(type)) | |
#define Newz(id, mem, size, type) mem = (type*) calloc(size, sizeof(type)) | |
#define Renew(mem, size, type) mem = (type*) realloc(mem,(size)*sizeof(type)) | |
#define Safefree(mem) free((void*)mem) | |
#define _XS_prime_count(a, b) ps.countPrimes(a, b) | |
#define croak(fmt,...) { printf(fmt,##__VA_ARGS__); exit(1); } | |
#define prime_precalc(n) /* */ | |
#define BITS_PER_WORD ((ULONG_MAX <= 4294967295UL) ? 32 : 64) | |
static UV isqrt(UV n) | |
{ | |
UV root; | |
if (sizeof(UV) == 8 && n >= 18446744065119617025UL) return 4294967295UL; | |
if (sizeof(UV) == 4 && n >= 4294836225UL) return 65535UL; | |
root = (UV) sqrt((double)n); | |
while (root*root > n) root--; | |
while ((root+1)*(root+1) <= n) root++; | |
return root; | |
} | |
/* Callback used for creating an array of primes. */ | |
static UV* sieve_array = 0; | |
static UV sieve_k; | |
static UV sieve_n; | |
void primesieve_callback(uint64_t pk) { | |
if (sieve_k <= sieve_n) { | |
if (pk < sieve_array[sieve_k-1]) | |
croak("Primes generated out of order. Switch to serial mode.\n"); | |
sieve_array[sieve_k++] = pk; | |
} | |
} | |
/* Generate an array of n small primes, where the kth prime is element p[k]. | |
* Remember to free when done. */ | |
static UV* generate_small_primes(UV n) | |
{ | |
UV* primes; | |
double fn = (double)n; | |
double flogn = log(fn); | |
double flog2n = log(flogn); | |
UV nth_prime = /* Dusart 2010 for > 179k, custom for 18-179k */ | |
(n >= 688383) ? (UV) ceil(fn*(flogn+flog2n-1.0+((flog2n-2.00)/flogn))) : | |
(n >= 178974) ? (UV) ceil(fn*(flogn+flog2n-1.0+((flog2n-1.95)/flogn))) : | |
(n >= 18) ? (UV) ceil(fn*(flogn+flog2n-1.0+((flog2n+0.30)/flogn))) | |
: 59; | |
New(0, primes, n+1, UV); | |
if (primes == 0) | |
croak("Can not allocate small primes\n"); | |
primes[0] = 0; | |
sieve_array = primes; | |
sieve_n = n; | |
sieve_k = 1; | |
SET_PPS_SERIAL; | |
ps.generatePrimes(2, nth_prime, primesieve_callback); | |
SET_PPS_PARALLEL; | |
sieve_array = 0; | |
return primes; | |
} | |
#else | |
/* We will use pre-sieving to speed up counting for small ranges */ | |
#define SIEVE_MULT 1 | |
#include "lehmer.h" | |
#include "util.h" | |
#include "cache.h" | |
#include "sieve.h" | |
/* Generate an array of n small primes, where the kth prime is element p[k]. | |
* Remember to free when done. */ | |
static UV* generate_small_primes(UV n) | |
{ | |
const unsigned char* sieve; | |
UV* primes; | |
UV i; | |
double fn = (double)n; | |
double flogn = log(fn); | |
double flog2n = log(flogn); | |
UV nth_prime = /* Dusart 2010 for > 179k, custom for 18-179k */ | |
(n >= 688383) ? (UV) ceil(fn*(flogn+flog2n-1.0+((flog2n-2.00)/flogn))) : | |
(n >= 178974) ? (UV) ceil(fn*(flogn+flog2n-1.0+((flog2n-1.95)/flogn))) : | |
(n >= 18) ? (UV) ceil(fn*(flogn+flog2n-1.0+((flog2n+0.30)/flogn))) | |
: 59; | |
if (get_prime_cache(nth_prime, &sieve) < nth_prime) { | |
release_prime_cache(sieve); | |
croak("Could not generate sieve for %"UVuf, nth_prime); | |
} | |
New(0, primes, n+1, UV); | |
if (primes == 0) | |
croak("Can not allocate small primes\n"); | |
primes[0] = 0; primes[1] = 2; primes[2] = 3; primes[3] = 5; | |
i = 3; | |
START_DO_FOR_EACH_SIEVE_PRIME( sieve, 7, nth_prime ) { | |
if (i >= n) break; | |
primes[++i] = p; | |
} END_DO_FOR_EACH_SIEVE_PRIME | |
release_prime_cache(sieve); | |
if (i < n) | |
croak("Did not generate enough small primes.\n"); | |
if (verbose > 1) printf("generated %lu small primes, from 2 to %lu\n", i, primes[i]); | |
return primes; | |
} | |
#endif | |
static UV icbrt(UV n) | |
{ | |
UV root = 0; | |
/* int s = BITS_PER_WORD - (BITS_PER_WORD % 3); */ | |
#if BITS_PER_WORD == 32 | |
int s = 30; | |
if (n >= UVCONST(4291015625)) return UVCONST(1625); | |
#else | |
int s = 63; | |
if (n >= UVCONST(18446724184312856125)) return UVCONST(2642245); | |
#endif | |
#if 0 | |
/* The integer cube root code is about 30% faster for me */ | |
root = (UV) pow(n, 1.0/3.0); | |
if (root*root*root > n) { | |
root--; | |
while (root*root*root > n) root--; | |
} else { | |
while ((root+1)*(root+1)*(root+1) <= n) root++; | |
} | |
#else | |
for ( ; s >= 0; s -= 3) { | |
UV b; | |
root += root; | |
b = 3*root*(root+1)+1; | |
if ((n >> s) >= b) { | |
n -= b << s; | |
root++; | |
} | |
} | |
#endif | |
return root; | |
} | |
/* Given an array of primes[1..lastprime], return Pi(n) where n <= lastprime. | |
* This is actually quite fast, and definitely faster than sieving. By using | |
* this we can avoid caching prime counts and also skip most calls to the | |
* segment siever. | |
*/ | |
static UV bs_prime_count(UV n, UV const* const primes, UV lastprime) | |
{ | |
UV i, j; | |
if (n < 2) return 0; | |
/* if (n > primes[lastprime]) return _XS_prime_count(2, n); */ | |
if (n >= primes[lastprime]) { | |
if (n == primes[lastprime]) return lastprime; | |
croak("called bspc(%lu) with counts up to %lu\n", n, primes[lastprime]); | |
} | |
i = 1; | |
j = lastprime; | |
while (i < j) { | |
UV mid = (i+j)/2; | |
if (primes[mid] <= n) i = mid+1; | |
else j = mid; | |
} | |
return i-1; | |
} | |
/* Use Mapes' method to calculate phi(x,a) for small a. This is really | |
* convenient and a little Perl script will spit this code out for whatever | |
* limit we select. It gets unwieldy with large a values. | |
*/ | |
static UV mapes(UV x, UV a) | |
{ | |
IV val; | |
if (a == 0) return x; | |
if (a == 1) return x-x/2; | |
val = x-x/2-x/3+x/6; | |
if (a >= 3) val += 0-x/5+x/10+x/15-x/30; | |
if (a >= 4) val += 0-x/7+x/14+x/21-x/42+x/35-x/70-x/105+x/210; | |
if (a >= 5) val += 0-x/11+x/22+x/33-x/66+x/55-x/110-x/165+x/330+x/77-x/154-x/231+x/462-x/385+x/770+x/1155-x/2310; | |
if (a >= 6) val += 0-x/13+x/26+x/39-x/78+x/65-x/130-x/195+x/390+x/91-x/182-x/273+x/546-x/455+x/910+x/1365-x/2730+x/143-x/286-x/429+x/858-x/715+x/1430+x/2145-x/4290-x/1001+x/2002+x/3003-x/6006+x/5005-x/10010-x/15015+x/30030; | |
if (a >= 7) val += 0-x/17+x/34+x/51-x/102+x/85-x/170-x/255+x/510+x/119-x/238-x/357+x/714-x/595+x/1190+x/1785-x/3570+x/187-x/374-x/561+x/1122-x/935+x/1870+x/2805-x/5610-x/1309+x/2618+x/3927-x/7854+x/6545-x/13090-x/19635+x/39270+x/221-x/442-x/663+x/1326-x/1105+x/2210+x/3315-x/6630-x/1547+x/3094+x/4641-x/9282+x/7735-x/15470-x/23205+x/46410-x/2431+x/4862+x/7293-x/14586+x/12155-x/24310-x/36465+x/72930+x/17017-x/34034-x/51051+x/102102-x/85085+x/170170+x/255255-x/510510; | |
return (UV) val; | |
} | |
static UV mapes7(UV x) { /* A tiny bit faster setup for a=7 */ | |
IV val = x-x/2-x/3-x/5+x/6-x/7+x/10-x/11-x/13+x/14+x/15-x/17+x/21+x/22+x/26 | |
-x/30+x/33+x/34+x/35+x/39-x/42+x/51+x/55+x/65-x/66-x/70+x/77-x/78 | |
+x/85+x/91-x/102-x/105-x/110+x/119-x/130+x/143-x/154-x/165-x/170 | |
-x/182+x/187-x/195+x/210+x/221-x/231-x/238-x/255-x/273-x/286+x/330 | |
-x/357-x/374-x/385+x/390-x/429-x/442-x/455+x/462+x/510+x/546-x/561 | |
-x/595-x/663+x/714; | |
if (x >= 715) { | |
val += 0-x/715+x/770+x/858+x/910-x/935-x/1001-x/1105+x/1122+x/1155+x/1190 | |
-x/1309+x/1326+x/1365+x/1430-x/1547+x/1785+x/1870+x/2002+x/2145 | |
+x/2210-x/2310-x/2431+x/2618-x/2730+x/2805+x/3003+x/3094+x/3315 | |
-x/3570+x/3927-x/4290+x/4641+x/4862+x/5005-x/5610-x/6006+x/6545 | |
-x/6630+x/7293+x/7735-x/7854; | |
if (x >= 9282) | |
val += 0-x/9282-x/10010+x/12155-x/13090-x/14586-x/15015-x/15470+x/17017 | |
-x/19635-x/23205-x/24310+x/30030-x/34034-x/36465+x/39270+x/46410 | |
-x/51051+x/72930-x/85085+x/102102+x/170170+x/255255-x/510510; | |
} | |
return (UV) val; | |
} | |
/******************************************************************************/ | |
/* In-order lists for manipulating our UV value / IV count pairs */ | |
/******************************************************************************/ | |
typedef struct { | |
UV v; | |
IV c; | |
} vc_t; | |
typedef struct { | |
vc_t* a; | |
UV size; | |
UV n; | |
} vcarray_t; | |
static vcarray_t vcarray_create(void) | |
{ | |
vcarray_t l; | |
l.a = 0; | |
l.size = 0; | |
l.n = 0; | |
return l; | |
} | |
static void vcarray_destroy(vcarray_t* l) | |
{ | |
if (l->a != 0) { | |
if (verbose > 2) printf("FREE list %p\n", l->a); | |
Safefree(l->a); | |
} | |
l->size = 0; | |
l->n = 0; | |
} | |
/* Insert a value/count pair. We do this indirection because about 80% of | |
* the calls result in a merge with the previous entry. */ | |
static void vcarray_insert(vcarray_t* l, UV val, IV count) | |
{ | |
UV n = l->n; | |
if (n > 0 && l->a[n-1].v < val) | |
croak("Previous value was %lu, inserting %lu out of order\n", l->a[n-1].v, val); | |
if (n >= l->size) { | |
UV new_size; | |
if (l->size == 0) { | |
new_size = 20000; | |
if (verbose>2) printf("ALLOCing list, size %lu\n", new_size); | |
New(0, l->a, new_size, vc_t); | |
} else { | |
new_size = (UV) (1.5 * l->size); | |
if (verbose>2) printf("REALLOCing list %p, new size %lu\n",l->a,new_size); | |
Renew( l->a, new_size, vc_t ); | |
} | |
if (l->a == 0) croak("could not allocate list\n"); | |
l->size = new_size; | |
} | |
/* printf(" inserting %lu %ld\n", val, count); */ | |
l->a[n].v = val; | |
l->a[n].c = count; | |
l->n++; | |
} | |
/* Merge the two sorted lists A and B into A. Each list has no duplicates, | |
* but they may have duplications between the two. We're quite interested | |
* in saving memory, so first remove all the duplicates, then do an in-place | |
* merge. */ | |
static void vcarray_merge(vcarray_t* a, vcarray_t* b) | |
{ | |
long ai, bi, bj, k, kn; | |
long an = a->n; | |
long bn = b->n; | |
vc_t* aa = a->a; | |
vc_t* ba = b->a; | |
/* Merge anything in B that appears in A. */ | |
for (ai = 0, bi = 0, bj = 0; bi < bn; bi++) { | |
/* Skip forward in A until empty or aa[ai].v <= ba[bi].v */ | |
UV bval = ba[bi].v; | |
while (ai < an && aa[ai].v > bval) | |
ai++; | |
/* if A empty then copy the remaining elements */ | |
if (ai >= an) { | |
if (bi == bj) | |
bj = bn; | |
else | |
while (bi < bn) | |
ba[bj++] = ba[bi++]; | |
break; | |
} | |
if (aa[ai].v == bval) | |
aa[ai].c += ba[bi].c; | |
else | |
ba[bj++] = ba[bi]; | |
} | |
if (verbose>2) printf(" removed %lu duplicates from b\n", bn - bj); | |
bn = bj; | |
if (bn == 0) { /* In case they were all duplicates */ | |
b->n = 0; | |
return; | |
} | |
/* kn = the final merged size. All duplicates are gone, so this is exact. */ | |
kn = an+bn; | |
if ((long)a->size < kn) { /* Make A big enough to hold kn elements */ | |
UV new_size = (UV) (1.2 * kn); | |
if (verbose>2) printf("REALLOCing list %p, new size %lu\n", a->a, new_size); | |
Renew( a->a, new_size, vc_t ); | |
aa = a->a; /* this could have been changed by the realloc */ | |
a->size = new_size; | |
} | |
/* merge A and B. Very simple using reverse merge. */ | |
ai = an-1; | |
bi = bn-1; | |
for (k = kn-1; k >= 0; k--) { | |
if (ai < 0) { /* A is exhausted, just filling in B */ | |
if (bi < 0) croak("ran out of data during merge"); | |
aa[k] = ba[bi--]; | |
} else if (bi < 0) { /* We've caught up with A */ | |
break; | |
} else if (aa[ai].v < ba[bi].v) { | |
aa[k] = aa[ai--]; | |
} else { | |
if (aa[ai].v == ba[bi].v) croak("deduplication error"); | |
aa[k] = ba[bi--]; | |
} | |
} | |
a->n = kn; /* A now has this many items */ | |
b->n = 0; /* B is marked empty */ | |
} | |
/* | |
* The main phi(x,a) algorithm. In this implementation, it takes under 10% | |
* of the total time for the Lehmer algorithm, but is a big memory consumer. | |
*/ | |
static UV phi(UV x, UV a) | |
{ | |
UV i, val, sval; | |
UV sum = 0; | |
IV count; | |
const UV* primes; | |
vcarray_t a1, a2; | |
vc_t* arr; | |
if (a == 1) return ((x+1)/2); | |
if (a <= 7) return mapes(x, a); | |
primes = generate_small_primes(a+1); | |
if (primes == 0) | |
croak("Could not generate primes for phi(%lu,%lu)\n", x, a); | |
if (x < primes[a+1]) { Safefree(primes); return (x > 0) ? 1 : 0; } | |
a1 = vcarray_create(); | |
a2 = vcarray_create(); | |
vcarray_insert(&a1, x, 1); | |
while (a > 7) { | |
UV primea = primes[a]; | |
UV sval_last = 0; | |
IV sval_count = 0; | |
arr = a1.a; | |
for (i = 0; i < a1.n; i++) { | |
count = arr[i].c; | |
if (count == 0) continue; /* Skip if count = 0 */ | |
val = arr[i].v; | |
sval = val / primea; | |
if (sval < primea) break; /* stop inserting into a2 if small */ | |
if (sval != sval_last) { /* non-merged value. Insert into a2 */ | |
if (sval_last != 0) | |
vcarray_insert(&a2, sval_last, sval_count); | |
sval_last = sval; | |
sval_count = 0; | |
} | |
sval_count -= count; /* Accumulate count for this sval */ | |
} | |
if (sval_last != 0) /* Insert the last sval */ | |
vcarray_insert(&a2, sval_last, sval_count); | |
/* For each small sval, add up the counts */ | |
for ( ; i < a1.n; i++) | |
sum -= arr[i].c; | |
/* Merge a1 and a2 into a1. a2 will be emptied. */ | |
vcarray_merge(&a1, &a2); | |
a--; | |
} | |
vcarray_destroy(&a2); | |
if (a != 7) croak("final loop is set for a=7, a = %lu\n", a); | |
arr = a1.a; | |
for (i = 0; i < a1.n; i++) { | |
count = arr[i].c; | |
if (count != 0) | |
sum += count * mapes7( arr[i].v ); | |
} | |
vcarray_destroy(&a1); | |
Safefree(primes); | |
return (UV) sum; | |
} | |
/* Legendre's method. Interesting and a good test for phi(x,a), but Lehmer's | |
* method is much faster (Legendre: a = pi(n^.5), Lehmer: a = pi(n^.25)) */ | |
UV _XS_legendre_pi(UV n) | |
{ | |
UV a; | |
if (n < SIEVE_LIMIT) | |
return _XS_prime_count(2, n); | |
a = _XS_legendre_pi(isqrt(n)); | |
return phi(n, a) + a - 1; | |
} | |
/* Meissel's method. */ | |
UV _XS_meissel_pi(UV n) | |
{ | |
UV a, b, c, sum, i, lastprime, lastpc, lastw, lastwpc; | |
const UV* primes = 0; /* small prime cache */ | |
DECLARE_TIMING_VARIABLES; | |
if (n < SIEVE_LIMIT) | |
return _XS_prime_count(2, n); | |
if (verbose > 0) printf("meissel %lu stage 1: calculate a,b,c \n", n); | |
TIMING_START; | |
a = _XS_meissel_pi(icbrt(n)); /* a = floor(n^1/3) */ | |
b = _XS_meissel_pi(isqrt(n)); /* b = floor(n^1/2) */ | |
c = a; /* c = a */ | |
TIMING_END_PRINT("stage 1") | |
if (verbose > 0) printf("meissel %lu stage 2: phi(x,a) (a=%lu b=%lu c=%lu)\n", n, a, b, c); | |
TIMING_START; | |
sum = phi(n, a) + ((b+a-2) * (b-a+1) / 2); | |
if (verbose > 0) printf("phi(%lu,%lu) = %lu. sum = %lu\n", n, a, sum - ((b+a-2) * (b-a+1) / 2), sum); | |
TIMING_END_PRINT("phi(x,a)") | |
lastprime = b*SIEVE_MULT; | |
if (verbose > 0) printf("meissel %lu stage 3: %lu small primes\n", n, lastprime); | |
TIMING_START; | |
primes = generate_small_primes(lastprime); | |
if (primes == 0) croak("Error generating primes.\n"); | |
lastpc = primes[lastprime]; | |
TIMING_END_PRINT("small primes") | |
prime_precalc(isqrt(n / primes[a+1])); | |
prime_precalc( (UV) pow(n, 2.0/5.0) ); /* Sieve more for speed */ | |
if (verbose > 0) printf("meissel %lu stage 4: loop %lu to %lu, pc to %lu\n", n, a+1, b, n/primes[a+1]); | |
TIMING_START; | |
/* Reverse the i loop so w increases. Count w in segments. */ | |
lastw = 0; | |
lastwpc = 0; | |
for (i = b; i > a; i--) { | |
UV w = n / primes[i]; | |
lastwpc = (w <= lastpc) ? bs_prime_count(w, primes, lastprime) | |
: lastwpc + _XS_prime_count(lastw+1, w); | |
lastw = w; | |
sum = sum - lastwpc; | |
} | |
TIMING_END_PRINT("stage 4") | |
Safefree(primes); | |
return sum; | |
} | |
/* Lehmer's method. This is basically Riesel's Lehmer function (page 22), | |
* with some additional code to help optimize it. */ | |
UV _XS_lehmer_pi(UV n) | |
{ | |
UV z, a, b, c, sum, i, j, lastprime, lastpc, lastw, lastwpc; | |
const UV* primes = 0; /* small prime cache, first b=pi(z)=pi(sqrt(n)) */ | |
DECLARE_TIMING_VARIABLES; | |
if (n < SIEVE_LIMIT) | |
return _XS_prime_count(2, n); | |
/* Protect against overflow. 2^32-1 and 2^64-1 are both divisible by 3. */ | |
if (n == UV_MAX) { | |
if ( (n%3) == 0 || (n%5) == 0 || (n%7) == 0 || (n%31) == 0 ) | |
n--; | |
else | |
return _XS_prime_count(2,n); | |
} | |
if (verbose > 0) printf("lehmer %lu stage 1: calculate a,b,c \n", n); | |
TIMING_START; | |
z = isqrt(n); | |
a = _XS_lehmer_pi(isqrt(z)); /* a = floor(n^1/4) */ | |
b = _XS_lehmer_pi(z); /* b = floor(n^1/2) */ | |
c = _XS_lehmer_pi(icbrt(n)); /* c = floor(n^1/3) */ | |
TIMING_END_PRINT("stage 1") | |
if (verbose > 0) printf("lehmer %lu stage 2: phi(x,a) (z=%lu a=%lu b=%lu c=%lu)\n", n, z, a, b, c); | |
TIMING_START; | |
sum = phi(n, a) + ((b+a-2) * (b-a+1) / 2); | |
TIMING_END_PRINT("phi(x,a)") | |
/* We get an array of the first b primes. This is used in stage 4. If we | |
* get more than necessary, we can use them to speed up some. | |
*/ | |
lastprime = b*SIEVE_MULT; | |
if (verbose > 0) printf("lehmer %lu stage 3: %lu small primes\n", n, lastprime); | |
TIMING_START; | |
primes = generate_small_primes(lastprime); | |
if (primes == 0) croak("Error generating primes.\n"); | |
lastpc = primes[lastprime]; | |
TIMING_END_PRINT("small primes") | |
TIMING_START; | |
/* Speed up all the prime counts by doing a big base sieve */ | |
prime_precalc( (UV) pow(n, 3.0/5.0) ); | |
/* Ensure we have the base sieve for big prime_count ( n/primes[i] ). */ | |
/* This is about 75k for n=10^13, 421k for n=10^15, 2.4M for n=10^17 */ | |
prime_precalc(isqrt(n / primes[a+1])); | |
TIMING_END_PRINT("sieve precalc") | |
if (verbose > 0) printf("lehmer %lu stage 4: loop %lu to %lu, pc to %lu\n", n, a+1, b, n/primes[a+1]); | |
TIMING_START; | |
/* Reverse the i loop so w increases. Count w in segments. */ | |
lastw = 0; | |
lastwpc = 0; | |
for (i = b; i >= a+1; i--) { | |
UV w = n / primes[i]; | |
lastwpc = (w <= lastpc) ? bs_prime_count(w, primes, lastprime) | |
: lastwpc + _XS_prime_count(lastw+1, w); | |
lastw = w; | |
sum = sum - lastwpc; | |
if (i <= c) { | |
UV bi = bs_prime_count( isqrt(w), primes, lastprime ); | |
for (j = i; j <= bi; j++) { | |
sum = sum - bs_prime_count(w / primes[j], primes, lastprime) + j - 1; | |
} | |
/* We could wrap the +j-1 in: sum += ((bi+1-i)*(bi+i))/2 - (bi-i+1); */ | |
} | |
} | |
TIMING_END_PRINT("stage 4") | |
Safefree(primes); | |
return sum; | |
} | |
UV _XS_LMO_pi(UV n) | |
{ | |
UV a, b, sum, i, lastprime, lastpc, lastw, lastwpc; | |
UV n13, n12, n23; | |
IV S1; | |
UV S2, P2; | |
const UV* primes = 0; /* small prime cache */ | |
char* mu = 0; /* moebius to n^1/3 */ | |
UV* lpf = 0; /* least prime factor to n^1/3 */ | |
DECLARE_TIMING_VARIABLES; | |
if (n < SIEVE_LIMIT) | |
return _XS_prime_count(2, n); | |
if (verbose > 0) printf("LMO %lu stage 1: calculate pi(n^1/3) \n", n); | |
TIMING_START; | |
n13 = icbrt(n); | |
n12 = isqrt(n); | |
n23 = (UV) (pow(n, 2.0/3.0)+0.01); | |
a = _XS_lehmer_pi(n13); | |
b = _XS_lehmer_pi(n12); | |
TIMING_END_PRINT("stage 1") | |
lastprime = b*SIEVE_MULT; | |
if (verbose > 0) printf("LMO %lu stage 2: %lu small primes\n", n, lastprime); | |
TIMING_START; | |
primes = generate_small_primes(lastprime); | |
if (primes == 0) croak("Error generating primes.\n"); | |
lastpc = primes[lastprime]; | |
TIMING_END_PRINT("small primes") | |
if (verbose > 0) printf("LMO %lu stage 3: calculate mu/lpf to %lu\n", n, a); | |
TIMING_START; | |
/* We could call MPU's: | |
* mu = _moebius_range(0, n13+1) | |
* but (1) it's a bit slower (something to be addressed), and (2) we will | |
* do the least prime factor calculation at the same time. | |
*/ | |
New(0, mu, n13+1, char); | |
memset(mu, 1, sizeof(char) * (n13+1)); | |
New(0, lpf, n13+1, UV); | |
memset(lpf, 0, sizeof(UV) * (n13+1)); | |
mu[0] = 0; | |
for (i = 1; i <= a; i++) { | |
UV primei = primes[i]; | |
UV j, isquared; | |
for (j = primei; j <= n13; j += primei) { | |
mu[j] = -mu[j]; | |
if (lpf[j] == 0) lpf[j] = primei; | |
} | |
isquared = primei * primei; | |
for (j = isquared; j <= n13; j += isquared) | |
mu[j] = 0; | |
} | |
/* for (i = 0; i <= n13; i++) { printf("mu %lu %ld\n", i, (IV)mu[i]); } */ | |
TIMING_END_PRINT("mu") | |
if (verbose > 0) printf("LMO %lu stage 4: calculate S1 (%lu)\n", n, n13); | |
TIMING_START; | |
S1 = 0; | |
for (i = 1; i <= n13; i++) | |
if (mu[i] != 0) | |
S1 += mu[i] * (IV) (n/i); | |
TIMING_END_PRINT("S1") | |
if (verbose > 0) printf("LMO %lu stage 4: S1 = %ld\n", n, S1); | |
S2 = 0; | |
/* TODO... */ | |
Safefree(mu); | |
Safefree(lpf); | |
prime_precalc(isqrt(n / primes[a+1])); | |
if (verbose > 0) printf("LMO %lu stage 5: P2 loop %lu to %lu, pc to %lu\n", n, a+1, b, n/primes[a+1]); | |
TIMING_START; | |
P2 = 0; | |
/* Reverse the i loop so w increases. Count w in segments. */ | |
lastw = 0; | |
lastwpc = 0; | |
for (i = b; i > a; i--) { | |
UV w = n / primes[i]; | |
lastwpc = (w <= lastpc) ? bs_prime_count(w, primes, lastprime) | |
: lastwpc + _XS_prime_count(lastw+1, w); | |
lastw = w; | |
P2 += lastwpc; | |
} | |
P2 -= ((b+a-2) * (b-a+1) / 2) - a + 1; | |
TIMING_END_PRINT("P2") | |
if (verbose > 0) printf("LMO %lu stage 5: P2 = %lu\n", n, P2); | |
Safefree(primes); | |
sum = P2 + S1 + S2; | |
return sum; | |
} | |
#ifdef PRIMESIEVE_STANDALONE | |
int main(int argc, char *argv[]) | |
{ | |
UV n, pi; | |
double t; | |
const char* method; | |
struct timeval t0, t1; | |
if (argc <= 1) { printf("usage: %s <n> [<method>]\n", argv[0]); return(1); } | |
n = strtoul(argv[1], 0, 10); | |
if (n < 2) { printf("Pi(%lu) = 0\n", n); return(0); } | |
if (argc > 2) | |
method = argv[2]; | |
else | |
method = "lehmer"; | |
gettimeofday(&t0, 0); | |
SET_PPS_PARALLEL; | |
if (!strcasecmp(method, "lehmer")) { pi = _XS_lehmer_pi(n); } | |
else if (!strcasecmp(method, "meissel")) { pi = _XS_meissel_pi(n); } | |
else if (!strcasecmp(method, "legendre")) { pi = _XS_legendre_pi(n); } | |
else if (!strcasecmp(method, "lmo")) { pi = _XS_LMO_pi(n); } | |
else if (!strcasecmp(method, "sieve")) { pi = _XS_prime_count(2, n); } | |
else { | |
printf("method must be one of: lehmer, meissel, legendre, lmo, or sieve\n"); | |
return(2); | |
} | |
gettimeofday(&t1, 0); | |
t = (t1.tv_sec-t0.tv_sec); t *= 1000000.0; t += (t1.tv_usec - t0.tv_usec); | |
printf("%8s Pi(%lu) = %lu in %10.5fs\n", method, n, pi, t / 1000000.0); | |
return(0); | |
} | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment