Created
May 7, 2014 01:34
-
-
Save dandye/1383b5f23b9f30e4de4c to your computer and use it in GitHub Desktop.
Intro to Open Source Geospatial with Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Introduction\n", | |
"==============\n", | |
"\n", | |
"I (@DanDye) am a member of the \"PyGIS\" group on LinkedIn and Karim Bahgat shared his [Index of GIS-related Python Libraries](http://pythongisresources.wordpress.com/)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from IPython.display import HTML\n", | |
"HTML('<iframe src=http://pythongisresources.wordpress.com/ width=1000 height=600></iframe>')\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<iframe src=http://pythongisresources.wordpress.com/ width=1000 height=600></iframe>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 10, | |
"text": [ | |
"<IPython.core.display.HTML at 0x8773da0>" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" * GDAL/OGR on Windows \n", | |
" * Native\n", | |
" * Cygwin/OSGeo4W\n", | |
" * GDAL/OGR on Windows + Python Bindings\n", | |
" * GDAL/OGR on Windows + Python Bindings + Other Stuff\n", | |
" * I recommend: [Anaconda](https://store.continuum.io/cshop/anaconda/)\n", | |
"\n", | |
"'''>>> conda install gdal '''\n", | |
"\n", | |
"\n", | |
"Afterwards, the GDAL/OGR Utilities are not in the path but they live here:\n", | |
"\n", | |
"[GDAL Utilities](file:\\C:\\Users\\ddye\\AppData\\Local\\Continuum\\Anaconda\\pkgs\\gdal-1.10.1-np18py27_2\\Lib\\site-packages\\osgeo\\)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from IPython.display import HTML\n", | |
"HTML('<iframe src=http://www.gdal.org/ogr2ogr.html width=1000 height=600></iframe>')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<iframe src=http://www.gdal.org/ogr2ogr.html width=1000 height=600></iframe>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"<IPython.core.display.HTML at 0x8773b38>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"OGR2OGR.EXE (conceptual) exercise\n", | |
"=============================\n", | |
"\n", | |
"Create State Flash Cards (PNGs) from a Shapefile of the USA. Each card's state should be zoomed to the full extent.\n", | |
"\n", | |
"Step 1: Query for a list of unique STATE_NAMEs\n", | |
"\n", | |
"Step 2: Extract each state's geographic feature with a WHERE clause on the STATE_NAME\n", | |
"\n", | |
"Step 3: Convert each SHP to a PNG" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from IPython.display import HTML\n", | |
"HTML('<iframe src=http://www.gdal.org/gdal_utilities.html width=1000 height=600></iframe>')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<iframe src=http://www.gdal.org/gdal_utilities.html width=1000 height=600></iframe>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 2, | |
"text": [ | |
"<IPython.core.display.HTML at 0x8773908>" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"HTML('<iframe src=https://2014.foss4g.org/ width=1000 height=600></iframe>')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<iframe src=https://2014.foss4g.org/ width=1000 height=600></iframe>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 2, | |
"text": [ | |
"<IPython.core.display.HTML at 0x4e32278>" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"HTML('<iframe src=https://conference.scipy.org/scipy2014/ width=1000 height=600></iframe>')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<iframe src=https://conference.scipy.org/scipy2014/ width=1000 height=600></iframe>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
"<IPython.core.display.HTML at 0x8773ba8>" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"HTML('<iframe src=http://pydata.org/ width=1000 height=600></iframe>')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<iframe src=http://pydata.org/ width=1000 height=600></iframe>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 5, | |
"text": [ | |
"<IPython.core.display.HTML at 0x8773c18>" | |
] | |
} | |
], | |
"prompt_number": 5 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment