Created
February 14, 2019 14:56
-
-
Save dangpzanco/441627291c4db13a639a79eac1328204 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import librosa | |
import pandas as pd | |
import numpy.random as rnd | |
import pathlib | |
import tqdm | |
dataset_folder = pathlib.Path('noise_data') | |
dataset_folder.mkdir(parents=True, exist_ok=True) | |
num_examples = 100 | |
time_duration = 10 | |
fs = 48000 | |
num_samples = int(fs*time_duration) | |
prettyProgressBar = tqdm.tqdm(range(num_examples)) | |
for i in prettyProgressBar: | |
x = rnd.randn(num_samples) | |
x /= np.maximum(np.max(x), -np.min(x)) | |
x *= rnd.rand() | |
filepath = dataset_folder / f'noise_{i}.wav' | |
librosa.output.write_wav(filepath, x, fs, norm=False) | |
file_list = list(dataset_folder.glob('*.wav')) | |
example_type = num_examples * ['eval'] | |
scene_label = num_examples * ['not_scene'] | |
city = num_examples * ['no_city'] | |
identifier = num_examples * ['rand'] | |
source_label = num_examples * ['z'] | |
dict_data = {'filename': file_list, | |
'example_type': example_type, | |
'scene_label': scene_label, | |
'city': city, | |
'identifier': identifier, | |
'source_label': source_label} | |
df = pd.DataFrame(dict_data) | |
df.to_csv('noise_meta.csv', index=False, sep='\t') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment