Skip to content

Instantly share code, notes, and snippets.

@dangpzanco
Created February 14, 2019 14:56
Show Gist options
  • Save dangpzanco/441627291c4db13a639a79eac1328204 to your computer and use it in GitHub Desktop.
Save dangpzanco/441627291c4db13a639a79eac1328204 to your computer and use it in GitHub Desktop.
import numpy as np
import librosa
import pandas as pd
import numpy.random as rnd
import pathlib
import tqdm
dataset_folder = pathlib.Path('noise_data')
dataset_folder.mkdir(parents=True, exist_ok=True)
num_examples = 100
time_duration = 10
fs = 48000
num_samples = int(fs*time_duration)
prettyProgressBar = tqdm.tqdm(range(num_examples))
for i in prettyProgressBar:
x = rnd.randn(num_samples)
x /= np.maximum(np.max(x), -np.min(x))
x *= rnd.rand()
filepath = dataset_folder / f'noise_{i}.wav'
librosa.output.write_wav(filepath, x, fs, norm=False)
file_list = list(dataset_folder.glob('*.wav'))
example_type = num_examples * ['eval']
scene_label = num_examples * ['not_scene']
city = num_examples * ['no_city']
identifier = num_examples * ['rand']
source_label = num_examples * ['z']
dict_data = {'filename': file_list,
'example_type': example_type,
'scene_label': scene_label,
'city': city,
'identifier': identifier,
'source_label': source_label}
df = pd.DataFrame(dict_data)
df.to_csv('noise_meta.csv', index=False, sep='\t')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment