Skip to content

Instantly share code, notes, and snippets.

@danhigham
Created December 23, 2017 04:45
Show Gist options
  • Save danhigham/b1da1a09f214fcd7bd228112fe173b04 to your computer and use it in GitHub Desktop.
Save danhigham/b1da1a09f214fcd7bd228112fe173b04 to your computer and use it in GitHub Desktop.
xmas_leds.ino
#include <bitswap.h>
#include <chipsets.h>
#include <color.h>
#include <colorpalettes.h>
#include <colorutils.h>
#include <controller.h>
#include <cpp_compat.h>
#include <dmx.h>
#include <FastLED.h>
#include <fastled_config.h>
#include <fastled_delay.h>
#include <fastled_progmem.h>
#include <fastpin.h>
#include <fastspi.h>
#include <fastspi_bitbang.h>
#include <fastspi_dma.h>
#include <fastspi_nop.h>
#include <fastspi_ref.h>
#include <fastspi_types.h>
#include <hsv2rgb.h>
#include <led_sysdefs.h>
#include <lib8tion.h>
#include <noise.h>
#include <pixelset.h>
#include <pixeltypes.h>
#include <platforms.h>
#include <power_mgt.h>
#define NUM_LEDS 300
#define BIG_COLOR_ORDER BGR
#define LITTLE_COLOR_ORDER RGB
#define LED_PIN 6
#define BRIGHTNESS 255
#define VOLTS 12
#define MAX_MA 2000
CRGBArray<NUM_LEDS> leds;
// Overall twinkle speed.
// 0 (VERY slow) to 8 (VERY fast).
// 4, 5, and 6 are recommended, default is 4.
#define TWINKLE_SPEED 5
// Overall twinkle density.
// 0 (NONE lit) to 8 (ALL lit at once).
// Default is 5.
#define TWINKLE_DENSITY 4
// How often to change color palettes.
#define SECONDS_PER_PALETTE 15
// Also: toward the bottom of the file is an array
// called "ActivePaletteList" which controls which color
// palettes are used; you can add or remove color palettes
// from there freely.
// Background color for 'unlit' pixels
// Can be set to CRGB::Black if desired.
CRGB gBackgroundColor = CRGB::Black;
// Example of dim incandescent fairy light background color
// CRGB gBackgroundColor = CRGB(CRGB::FairyLight).nscale8_video(16);
// If AUTO_SELECT_BACKGROUND_COLOR is set to 1,
// then for any palette where the first two entries
// are the same, a dimmed version of that color will
// automatically be used as the background color.
#define AUTO_SELECT_BACKGROUND_COLOR 0
// If COOL_LIKE_INCANDESCENT is set to 1, colors will
// fade out slighted 'reddened', similar to how
// incandescent bulbs change color as they get dim down.
#define COOL_LIKE_INCANDESCENT 1
CRGBPalette16 gCurrentPalette;
CRGBPalette16 gTargetPalette;
CRGB colors[] = {
CRGB::White, CRGB::Green, CRGB::Red
};
int colorStart;
int color;
int pos;
int groupSize;
int currentRoutine;
int bright;
int colorStop;
void setup() {
Serial.begin(9600);
FastLED.addLeds<WS2811, LED_PIN, BIG_COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.setMaxPowerInVoltsAndMilliamps( VOLTS, MAX_MA);
FastLED.setBrightness( BRIGHTNESS );
pos = 0;
color = 0;
colorStart=0;
groupSize=3;
currentRoutine=0;
// routineTimer.setInterval(10000, changeRoutine);
chooseNextColorPalette(gTargetPalette);
}
void changeRoutine() {
currentRoutine ++;
if (currentRoutine > 2) {
currentRoutine = 0;
}
for (int x=0; x<NUM_LEDS; x++) {
leds[x] = CRGB::Black;
}
FastLED.show();
// reset
color = 0;
}
void loop() {
switch (currentRoutine) {
case 0:
drawTwinkles(leds);
EVERY_N_SECONDS( SECONDS_PER_PALETTE ) {
chooseNextColorPalette( gTargetPalette );
}
EVERY_N_MILLISECONDS( 10 ) {
nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 12);
}
break;
case 1:
colorChase();
break;
case 2:
spread();
break;
default:
break;
}
EVERY_N_SECONDS( 15 ) {
changeRoutine();
}
FastLED.show();
}
void colorChase() {
color = colorStart;
for (int x=0; x<NUM_LEDS; x++) {
leds[x] = colors[color];
if (x % groupSize == 0) color++;
if (color > 2) color = 0;
}
colorStart ++;
if (colorStart > 2) colorStart = 0;
FastLED.delay(200);
}
void spread() {
int midPoint = (NUM_LEDS / 2);
if (leds[midPoint] == CRGB(0,0,0)) {
//at the start
leds[midPoint] = colors[color];
} else {
//read midpoint color and then iterate one way reading until we find a different color
colorStop = -1;
for (int x=midPoint; x<NUM_LEDS; x++) {
if (leds[x] != colors[color]) {
colorStop = x;
break;
}
}
if (colorStop > -1) {
leds[colorStop] = colors[color];
leds[NUM_LEDS-colorStop] = colors[color];
} else {
color ++;
if (color > 2) {
color = 0;
}
}
}
// FastLED.delay(50);
}
// This function loops over each pixel, calculates the
// adjusted 'clock' that this pixel should use, and calls
// "CalculateOneTwinkle" on each pixel. It then displays
// either the twinkle color of the background color,
// whichever is brighter.
void drawTwinkles( CRGBSet& L)
{
// "PRNG16" is the pseudorandom number generator
// It MUST be reset to the same starting value each time
// this function is called, so that the sequence of 'random'
// numbers that it generates is (paradoxically) stable.
uint16_t PRNG16 = 11337;
uint32_t clock32 = millis();
// Set up the background color, "bg".
// if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
// the current palette are identical, then a deeply faded version of
// that color is used for the background color
CRGB bg;
if( (AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(gCurrentPalette[0] == gCurrentPalette[1] )) {
bg = gCurrentPalette[0];
uint8_t bglight = bg.getAverageLight();
if( bglight > 64) {
bg.nscale8_video( 16); // very bright, so scale to 1/16th
} else if( bglight > 16) {
bg.nscale8_video( 64); // not that bright, so scale to 1/4th
} else {
bg.nscale8_video( 86); // dim, scale to 1/3rd.
}
} else {
bg = gBackgroundColor; // just use the explicitly defined background color
}
uint8_t backgroundBrightness = bg.getAverageLight();
for( CRGB& pixel: L) {
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
uint16_t myclockoffset16= PRNG16; // use that number as clock offset
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF)>>4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
// We now have the adjusted 'clock' for this pixel, now we call
// the function that computes what color the pixel should be based
// on the "brightness = f( time )" idea.
CRGB c = computeOneTwinkle( myclock30, myunique8);
uint8_t cbright = c.getAverageLight();
int16_t deltabright = cbright - backgroundBrightness;
if( deltabright >= 32 || (!bg)) {
// If the new pixel is significantly brighter than the background color,
// use the new color.
pixel = c;
} else if( deltabright > 0 ) {
// If the new pixel is just slightly brighter than the background color,
// mix a blend of the new color and the background color
pixel = blend( bg, c, deltabright * 8);
} else {
// if the new pixel is not at all brighter than the background color,
// just use the background color.
pixel = bg;
}
}
}
// This function takes a time in pseudo-milliseconds,
// figures out brightness = f( time ), and also hue = f( time )
// The 'low digits' of the millisecond time are used as
// input to the brightness wave function.
// The 'high digits' are used to select a color, so that the color
// does not change over the course of the fade-in, fade-out
// of one cycle of the brightness wave function.
// The 'high digits' are also used to determine whether this pixel
// should light at all during this cycle, based on the TWINKLE_DENSITY.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
{
uint16_t ticks = ms >> (8-TWINKLE_SPEED);
uint8_t fastcycle8 = ticks;
uint16_t slowcycle16 = (ticks >> 8) + salt;
slowcycle16 += sin8( slowcycle16);
slowcycle16 = (slowcycle16 * 2053) + 1384;
uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
uint8_t bright = 0;
if( ((slowcycle8 & 0x0E)/2) < TWINKLE_DENSITY) {
bright = attackDecayWave8( fastcycle8);
}
uint8_t hue = slowcycle8 - salt;
CRGB c;
if( bright > 0) {
c = ColorFromPalette( gCurrentPalette, hue, bright, NOBLEND);
if( COOL_LIKE_INCANDESCENT == 1 ) {
coolLikeIncandescent( c, fastcycle8);
}
} else {
c = CRGB::Black;
}
return c;
}
// This function is like 'triwave8', which produces a
// symmetrical up-and-down triangle sawtooth waveform, except that this
// function produces a triangle wave with a faster attack and a slower decay:
//
// / \
// / \
// / \
// / \
//
uint8_t attackDecayWave8( uint8_t i)
{
if( i < 86) {
return i * 3;
} else {
i -= 86;
return 255 - (i + (i/2));
}
}
// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
{
if( phase < 128) return;
uint8_t cooling = (phase - 128) >> 4;
c.g = qsub8( c.g, cooling);
c.b = qsub8( c.b, cooling * 2);
}
// A mostly (dark) green palette with red berries.
#define Holly_Green 0x00580c
#define Holly_Red 0xB00402
const TProgmemRGBPalette16 Holly_p FL_PROGMEM =
{ Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
Holly_Green, Holly_Green, Holly_Green, Holly_Red
};
// A red and white striped palette
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray,
CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray };
// A mostly blue palette with white accents.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
{ CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
CRGB::Blue, CRGB::Gray, CRGB::Gray, CRGB::Gray };
// A cold, icy pale blue palette
#define Ice_Blue1 0x0C1040
#define Ice_Blue2 0x182080
#define Ice_Blue3 0x5080C0
const TProgmemRGBPalette16 Ice_p FL_PROGMEM =
{
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
Ice_Blue2, Ice_Blue2, Ice_Blue2, Ice_Blue3
};
// Add or remove palette names from this list to control which color
// palettes are used, and in what order.
const TProgmemRGBPalette16* ActivePaletteList[] = {
&BlueWhite_p,
&RainbowColors_p,
&PartyColors_p,
&RedWhite_p,
&Holly_p,
&Ice_p
};
// Advance to the next color palette in the list (above).
void chooseNextColorPalette( CRGBPalette16& pal)
{
const uint8_t numberOfPalettes = sizeof(ActivePaletteList) / sizeof(ActivePaletteList[0]);
static uint8_t whichPalette = -1;
whichPalette = addmod8( whichPalette, 1, numberOfPalettes);
pal = *(ActivePaletteList[whichPalette]);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment