Skip to content

Instantly share code, notes, and snippets.

@danidiaz
Last active January 1, 2016 13:09
Show Gist options
  • Select an option

  • Save danidiaz/8149316 to your computer and use it in GitHub Desktop.

Select an option

Save danidiaz/8149316 to your computer and use it in GitHub Desktop.
Aaaa $A \in \mathcal{C}$ bbb
$(F\downarrow U)$
$F(\star)=M$
$\bullet \longleftarrow \bullet \longrightarrow\bullet$
$\left(.\downarrow .\right): Cat^{\rightarrow\leftarrow} \longrightarrow Cat$
$F : \mathcal{E} \to \mathcal{C}$
$f: \langle X, h: A \rightarrow UX \rangle \rightarrow \langle X', h': A \rightarrow UX' \rangle$
$(Uf)\circ h = h'$
$a_1 a_{ab}$
$A\xrightarrow{S}C\xleftarrow{T}B$
$(S\downarrow-)\colon [B,C]\to\bf Cat$
$\mathbb Z/2 = \hom_{\mathbb Z/2}(F(X), T) \simeq \hom_\mathbf{Cat}(X, \mathrm{Set}(\mathbb Z/2))$
$\hom_\mathbf{Cat}(X, \mathrm{Set}(\mathbb Z/2))$
\begin{split}
a& =b+c-d\\
& \quad +e-f\\
& =g+h\\
& =i
\end{split}
$\delta$
$a \in c_1$
$\frac{3}{(3,a_{34})}$
$\require{AMScd}
\begin{CD}
T(d) @>{\tau_d}>> S(d)\\
@V{T(\varphi)}VV @VV{T(\varphi)}V \\
T(d') @>{\tau_{d'}}>> S(d')
\end{CD}$
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment