Created
November 25, 2022 04:25
-
-
Save danielhavir/e112b1ffd8ddc354f7b36374aeb84874 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class LoRAConv1DWrapper(nn.Module): | |
"""SimpleWrapper class that implements LoRA: Low-Rank Adaptation of Large Language Models. | |
Arxiv link: https://arxiv.org/abs/2106.09685""" | |
def __init__(self, conv1dmodule: transformers.pytorch_utils.Conv1D, lora_rank: int): | |
super().__init__() | |
self.base_module = conv1dmodule | |
d1, d2 = self.base_module.weight.size() | |
self.A = nn.Parameter( | |
torch.empty( | |
d1, lora_rank, dtype=self.base_module.weight.dtype, device=DEVICE | |
) | |
) | |
self.B = nn.Parameter( | |
torch.empty( | |
d2, lora_rank, dtype=self.base_module.weight.dtype, device=DEVICE | |
) | |
) | |
nn.init.kaiming_normal_(self.A) | |
nn.init.zeros_(self.B) | |
def forward(self, x): | |
bs, seq_len, fs = x.size() | |
x = x.view(-1, fs) | |
W = self.base_module.weight | |
bias = self.base_module.bias | |
W_out = torch.matmul(x, W) | |
A_out = torch.matmul(x, self.A) | |
B_out = torch.matmul(A_out, self.B.T) | |
out = W_out + B_out | |
out = out + bias | |
return out.view(bs, seq_len, out.size(-1)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment