Created
August 26, 2017 20:28
-
-
Save daniestevez/95a6af1a4fc874cd020e8b5e5d8416bd to your computer and use it in GitHub Desktop.
Eclipse waterfalls
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
import numpy as np | |
from scipy.fftpack import fft, fftshift | |
from scipy.signal import blackman | |
import matplotlib.pyplot as plt | |
import sys | |
import digital_rf | |
# Parameters | |
# Good to crop a 1920x1080 image of whole contest | |
#N = 4096 | |
#averaging = 1077 | |
# Banner 1920x1080 (to crop) | |
#N = 1024 | |
#averaging = 1077*4 | |
# High resolution | |
#N = 16384 | |
#averaging = 93 # 2s | |
# Small (1920x2048) | |
N = 2048 | |
averaging = 5624 # 15s | |
#vmin = {'rx0' : -125, 'rx1' : -130, 'rx2': -135} | |
#vmax = {'rx0' : -70, 'rx1' : -80, 'rx2' : -80} | |
vmin = {'rx0' : -125, 'rx1' : -125, 'rx2': -125} | |
vmax = {'rx0' : -75, 'rx1' : -75, 'rx2' : -75} | |
def process_channel(channel): | |
# Digital RF reading | |
eclipse = digital_rf.DigitalRFReader(['/mnt/eclipse2017']) | |
start_index, end_index = eclipse.get_bounds(channel) | |
num_samples = end_index - start_index | |
total_transforms = num_samples//(N//2) - 1 | |
lines = total_transforms//averaging | |
window = blackman(N) | |
npz_filename = 'data_{}.npz'.format(channel) | |
try: | |
data = np.load(npz_filename) | |
waterfall = data['waterfall'] | |
lines_done = data['lines_done'] | |
except IOError: | |
waterfall = np.zeros((lines, N), dtype=np.float32) | |
lines_done = 0 | |
done = lines_done == lines | |
print('Loaded {}/{} lines already computed'.format(lines_done, lines)) | |
try: | |
for line in range(lines_done, lines): | |
print('Computing line {}/{}'.format(line + 1, lines)) | |
sum_transforms = np.zeros(N, dtype=np.float32) | |
for transform in range(averaging): | |
start = (line * averaging + transform)*N//2 | |
x = eclipse.read_vector(start_index + start, N, channel).flatten() | |
f = fftshift(fft(x * window)) | |
sum_transforms += np.real(f)**2 + np.imag(f)**2 | |
waterfall[line,:] = 10*np.log10(sum_transforms/averaging) - 20*np.log10(N) | |
lines_done += 1 | |
if not done: | |
np.savez(npz_filename, waterfall=waterfall, lines_done=lines_done) | |
except KeyboardInterrupt: | |
if not done: | |
print('Keyboard Interrupt. Saving work') | |
np.savez(npz_filename, waterfall=waterfall, lines_done=lines_done) | |
sys.exit() | |
print('Plotting PNG images') | |
chunk = 5000 | |
q, r = divmod(waterfall.T.shape[1], chunk) | |
chunks = q + int(bool(r)) | |
for i in range(chunks): | |
print('Plotting image {}/{}'.format(i+1, chunks)) | |
plt.imsave('waterfall_{}_{}.png'.format(channel,i), | |
waterfall.T[:,i*chunk:(i+1)*chunk], | |
vmin=vmin[channel], vmax=vmax[channel], | |
cmap='viridis', origin='bottom') | |
if __name__ == "__main__": | |
for channel in [ 'rx0', 'rx1', 'rx2' ]: | |
print 'Processing channel {}'.format(channel) | |
process_channel(channel) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
import numpy as np | |
from scipy.fftpack import fft, fftshift | |
from scipy.signal import blackman | |
import matplotlib.pyplot as plt | |
import sys | |
import digital_rf | |
# Parameters | |
# Good to crop a 1920x1080 image of whole contest | |
#N = 4096 | |
#averaging = 1077 | |
# Banner 1920x1080 (to crop) | |
#N = 1024 | |
#averaging = 1077*4 | |
# High resolution | |
#N = 16384 | |
#averaging = 93 # 2s | |
# Small (1920x2048) | |
#N = 2048 | |
#averaging = 5624 # 15s | |
# WWV | |
N = 2**24 | |
averaging = 2 | |
#vmin = {'rx0' : -125, 'rx1' : -130, 'rx2': -135} | |
#vmax = {'rx0' : -70, 'rx1' : -80, 'rx2' : -80} | |
#vmin = {'rx0' : -125, 'rx1' : -125, 'rx2': -125} | |
#vmax = {'rx0' : -75, 'rx1' : -75, 'rx2' : -75} | |
vmin = {'rx1' : -170} | |
vmax = {'rx1': -100 } | |
def process_channel(channel): | |
# Digital RF reading | |
eclipse = digital_rf.DigitalRFReader(['/mnt/eclipse2017']) | |
start_index, end_index = eclipse.get_bounds(channel) | |
num_samples = end_index - start_index | |
total_transforms = num_samples//(N//2) - 1 | |
lines = total_transforms//averaging | |
window = blackman(N) | |
npz_filename = 'data_{}.npz'.format(channel) | |
centre_freq = 10e6 - 9970e3 + 1e3 | |
sample_rate = 384e3 | |
hz_per_bin = float(sample_rate)/N | |
centre_bin = int(centre_freq/hz_per_bin) + N//2 | |
span_hz = 10 | |
span_bins = int(span_hz/hz_per_bin) | |
bins_to_keep = np.arange(centre_bin - span_bins, centre_bin + span_bins) | |
try: | |
data = np.load(npz_filename) | |
waterfall = data['waterfall'] | |
lines_done = data['lines_done'] | |
except IOError: | |
waterfall = np.zeros((lines, len(bins_to_keep)), dtype=np.float32) | |
lines_done = 0 | |
done = lines_done == lines | |
print('Loaded {}/{} lines already computed'.format(lines_done, lines)) | |
try: | |
for line in range(lines_done, lines): | |
print('Computing line {}/{}'.format(line + 1, lines)) | |
sum_transforms = np.zeros(len(bins_to_keep), dtype=np.float32) | |
for transform in range(averaging): | |
start = (line * averaging + transform)*N//2 | |
x = eclipse.read_vector(start_index + start, N, channel).flatten() | |
f = fftshift(fft(x * window))[bins_to_keep] | |
sum_transforms += np.real(f)**2 + np.imag(f)**2 | |
waterfall[line,:] = 10*np.log10(sum_transforms/averaging) - 20*np.log10(N) | |
lines_done += 1 | |
if not done: | |
np.savez(npz_filename, waterfall=waterfall, lines_done=lines_done) | |
except KeyboardInterrupt: | |
if not done: | |
print('Keyboard Interrupt. Saving work') | |
np.savez(npz_filename, waterfall=waterfall, lines_done=lines_done) | |
sys.exit() | |
print('Plotting PNG images') | |
chunk = 5000 | |
q, r = divmod(waterfall.T.shape[1], chunk) | |
chunks = q + int(bool(r)) | |
for i in range(chunks): | |
print('Plotting image {}/{}'.format(i+1, chunks)) | |
plt.imsave('waterfall_{}_{}.png'.format(channel,i), | |
waterfall.T[:,i*chunk:(i+1)*chunk], | |
vmin=vmin[channel], vmax=vmax[channel], | |
cmap='viridis', origin='bottom') | |
if __name__ == "__main__": | |
for channel in ['rx1']: | |
print 'Processing channel {}'.format(channel) | |
process_channel(channel) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment