Created
September 26, 2025 12:18
-
-
Save daniil-lyakhov/3f2c91496d343a12cfa007f3694d4002 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from optimum.intel.openvino import OVModelForCausalLM, OVWeightQuantizationConfig | |
| import whowhatbench | |
| model_dir = "state-spaces/mamba-130m-hf" | |
| tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
| ov_model = AutoModelForCausalLM.from_pretrained(model_dir) | |
| quantization_config = OVWeightQuantizationConfig(bits=4) | |
| optimized_model = OVModelForCausalLM.from_pretrained(model_dir,quantization_config=quantization_config) | |
| evaluator = whowhatbench.TextEvaluator(base_model=ov_model, tokenizer=tokenizer) | |
| metrics_per_prompt, metrics = evaluator.score(optimized_model) | |
| metric_of_interest = "similarity" | |
| print(metric_of_interest, ": ", metrics["similarity"][0]) | |
| worst_examples = evaluator.worst_examples(top_k=5, metric=metric_of_interest) | |
| print("Metric: ", metric_of_interest) | |
| for e in worst_examples: | |
| print("\t=========================") | |
| print("\tPrompt: ", e["prompt"]) | |
| print("\tBaseline Model:\n ", "\t" + e["source_model"]) | |
| print("\tOptimized Model:\n ", "\t" + e["optimized_model"]) |
Author
daniil-lyakhov
commented
Sep 26, 2025
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment