Skip to content

Instantly share code, notes, and snippets.

@danijar
Last active December 31, 2021 10:04
Show Gist options
  • Save danijar/3f3b547ff68effb03e20c470af22c696 to your computer and use it in GitHub Desktop.
Save danijar/3f3b547ff68effb03e20c470af22c696 to your computer and use it in GitHub Desktop.
TensorFlow Variable-Length Sequence Classification
# Working example for my blog post at:
# http://danijar.com/variable-sequence-lengths-in-tensorflow/
import functools
import sets
import tensorflow as tf
from tensorflow.models.rnn import rnn_cell
from tensorflow.models.rnn import rnn
def lazy_property(function):
attribute = '_' + function.__name__
@property
@functools.wraps(function)
def wrapper(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return wrapper
class VariableSequenceClassification:
def __init__(self, data, target, num_hidden=200, num_layers=2):
self.data = data
self.target = target
self._num_hidden = num_hidden
self._num_layers = num_layers
self.prediction
self.error
self.optimize
@lazy_property
def length(self):
used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
length = tf.reduce_sum(used, reduction_indices=1)
length = tf.cast(length, tf.int32)
return length
@lazy_property
def prediction(self):
# Recurrent network.
output, _ = rnn.dynamic_rnn(
rnn_cell.GRUCell(self._num_hidden),
data,
dtype=tf.float32,
sequence_length=self.length,
)
last = self._last_relevant(output, self.length)
# Softmax layer.
weight, bias = self._weight_and_bias(
self._num_hidden, int(self.target.get_shape()[1]))
prediction = tf.nn.softmax(tf.matmul(last, weight) + bias)
return prediction
@lazy_property
def cost(self):
cross_entropy = -tf.reduce_sum(self.target * tf.log(self.prediction))
return cross_entropy
@lazy_property
def optimize(self):
learning_rate = 0.003
optimizer = tf.train.RMSPropOptimizer(learning_rate)
return optimizer.minimize(self.cost)
@lazy_property
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
return tf.reduce_mean(tf.cast(mistakes, tf.float32))
@staticmethod
def _weight_and_bias(in_size, out_size):
weight = tf.truncated_normal([in_size, out_size], stddev=0.01)
bias = tf.constant(0.1, shape=[out_size])
return tf.Variable(weight), tf.Variable(bias)
@staticmethod
def _last_relevant(output, length):
batch_size = tf.shape(output)[0]
max_length = int(output.get_shape()[1])
output_size = int(output.get_shape()[2])
index = tf.range(0, batch_size) * max_length + (length - 1)
flat = tf.reshape(output, [-1, output_size])
relevant = tf.gather(flat, index)
return relevant
if __name__ == '__main__':
# We treat images as sequences of pixel rows.
train, test = sets.Mnist()
_, rows, row_size = train.data.shape
num_classes = train.target.shape[1]
data = tf.placeholder(tf.float32, [None, rows, row_size])
target = tf.placeholder(tf.float32, [None, num_classes])
model = VariableSequenceClassification(data, target)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for epoch in range(10):
for _ in range(100):
batch = train.sample(10)
sess.run(model.optimize, {data: batch.data, target: batch.target})
error = sess.run(model.error, {data: test.data, target: test.target})
print('Epoch {:2d} error {:3.1f}%'.format(epoch + 1, 100 * error))
@joyspark
Copy link

joyspark commented Nov 4, 2016

I have a same problem like MartinThoma

@zak27
Copy link

zak27 commented Nov 17, 2016

Hello, I would like to use your code to variable lunguezza strings. I need help please. My goal and classify each string with a target (target is 0 or 1 then only 2 classes), I do not work with images.
My trainset file is like the following:
1 s1 s2 ... sn
0 s1 s2 ... si
1 s1 s2
where the first column is the target of the sequence represented by 's' values (the sequence can be binary or not).

After I did the reading files, what can I do to adapt your main?
Thank you.

@Dellen
Copy link

Dellen commented Aug 4, 2017

May I ask why are you used a "-" in your cost function?

@mengcz13
Copy link

mengcz13 commented Aug 4, 2017

@Dellen
Maybe you should refer to the definition of cross entropy loss function...
-tf.reduce_sum(self.target * tf.log(self.prediction)) should be equivalent to tf.reduce_sum(self.target * tf.log(1.0/self.prediction)).

@lireagan
Copy link

lireagan commented Aug 16, 2017

HI, I noticed that you have removed the DropoutWrapper in this version, which will cause the model outputs to be random in testing or evaluating stages previously. To avoid this problem, I modified the codes like this:

    def __init__(self, data, target, learning_rate=0.001, num_hidden=256, num_layers=2, dropout = 0.8):
        self.data = data
        self.target = target
        self._num_hidden = num_hidden
        self._num_layers = num_layers
        self._dropout = dropout
        self._learning_rate = learning_rate
        self.prediction
        self.error
        self.optimize
        self._is_training = True

    @lazy_property
    def prediction(self):
        cell = tf.contrib.rnn.LSTMCell(self._num_hidden)
        if _is_training == True:
            cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=self._dropout)
        cell = tf.contrib.rnn.MultiRNNCell([cell] * self._num_layers)
        output, _ = tf.nn.dynamic_rnn(
            cell,
            self.data,
            dtype=tf.float32,
            sequence_length=self.length,
        )
        last = self._last_relevant(output, self.length)
        # Softmax layer.
        weight, bias = self._weight_and_bias(
            self._num_hidden, int(self.target.get_shape()[1]))
        prediction = tf.nn.softmax(tf.matmul(last, weight) + bias)
        return prediction

    def set_is_training(self, is_training):
        self._is_training = is_training

And in training stages, I set_is_training(True); in testing or evaluating stages, I set_is_training(False).

But I found that because the prediction function is defined as a @lazy_property, if _is_training == True:will work only when the first time I call the model.prediction. As a result, if in training stage I set _is_training = True, the DropoutWrapper will work in testing and evaluating stages also.

So, how can I use dropout in training, and remove the dropout in testing stages? Thank you very much for your help!

@darioAnongba
Copy link

Hello,

Thank you for this post. Is this code still relevant ? Would using gather_nd solve the problem of retrieving the last relevant ? If yes, how would you use it ?

@abaybektursun
Copy link

Here is update version that works with TF 1.4: https://gist.github.com/abaybektursun/98656e483ec6e918c26235b47f3f5d60

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment