Created
November 10, 2016 21:42
-
-
Save danijar/f6d43c42d98c54ac29fc1a240d8865e8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class Network: | |
def __init__(self, num_inputs, num_hidden, num_output, | |
init_weight_scale=0.5): | |
self.w1 = np.random.normal( | |
0, init_weight_scale, (num_inputs + 1, num_hidden)) | |
self.w2 = np.random.normal( | |
0, init_weight_scale, (num_hidden + 1, num_output)) | |
self.inputs = None | |
self.hidden = None | |
self.output = None | |
def forward(self, inputs): | |
self.inputs = np.insert(inputs, 0, 1) | |
self.hidden = self.sigmoid(self.inputs.dot(self.w1)) | |
self.hidden = np.insert(self.hidden, 0, 1) | |
self.output = self.sigmoid(self.hidden.dot(self.w2)) | |
return self.output | |
def backward(self, target): | |
# Output layer | |
delta_output_out = self.delta_cost(self.output, target) | |
delta_output_local = self.delta_sigmoid(self.output) | |
self.delta_output = delta_output_out * delta_output_local | |
# Hidden layer | |
delta_hidden_out = self.delta_output.dot(self.w2.T)[1:] | |
delta_hidden_local = self.delta_sigmoid(self.hidden)[1:] | |
self.delta_hidden = delta_hidden_local * delta_hidden_out | |
# Weights | |
self.delta_w2 = np.outer(self.hidden, self.delta_output) | |
self.delta_w1 = np.outer(self.inputs, self.delta_hidden) | |
assert self.w1.shape == self.delta_w1.shape | |
assert self.w2.shape == self.delta_w2.shape | |
def gradient_decent(self, learning_rate=0.1): | |
self.w1 -= learning_rate * self.delta_w1 | |
self.w2 -= learning_rate * self.delta_w2 | |
@staticmethod | |
def cost(prediction, target): | |
return (prediction - target) ** 2 | |
@staticmethod | |
def delta_cost(prediction, target): | |
return prediction - target | |
@staticmethod | |
def sigmoid(x): | |
return 1 / (1 + np.exp(-x)) | |
@classmethod | |
def delta_sigmoid(cls, x): | |
return cls.sigmoid(x) * (1 - cls.sigmoid(x)) | |
network = Network(2, 2, 1, init_weight_scale=1) | |
inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) | |
targets = np.array([[0], [1], [1], [0]]) | |
for _ in range(10000): | |
cost = 0 | |
error = 0 | |
for input_, target in zip(inputs, targets): | |
prediction = network.forward(input_) | |
cost += float(network.cost(prediction, 0)) | |
guess = 0 if prediction[0] < 0.5 else 1 | |
error += int(guess != target) | |
network.backward(target) | |
network.gradient_decent(learning_rate=0.1) | |
cost /= len(inputs) | |
error /= len(inputs) | |
print('Cost', cost, 'Error', error) | |
print('w1\n', network.w1) | |
print('w2\n', network.w2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment