Created
December 19, 2024 15:59
-
-
Save dansalias/9e91399d0dea3a9e02c359a4274be6e2 to your computer and use it in GitHub Desktop.
Backpropagation in Rust
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
use crate::layer::Layer; | |
use crate::network::Network; | |
fn get_d_output( | |
output_layer: &Layer, | |
delta: Vec<f64>, | |
) -> Vec<f64> { | |
if output_layer.activation_functions.len() > 0 { | |
output_layer | |
.activation_functions | |
.iter() | |
.rfold(output_layer.get_activations(), |values, activation_function| { | |
activation_function.derivative(values) | |
}) | |
.iter() | |
.zip(delta.iter()) | |
.map(|(z, d)| z * d) | |
.collect() | |
} else { | |
delta | |
} | |
} | |
fn get_layer_gradient( | |
input_layer: &Layer, | |
delta: &Vec<f64>, | |
) -> Vec<(Vec<f64>, f64)> { | |
delta | |
.iter() | |
.map(|d| ( | |
input_layer | |
.get_activations() | |
.iter() | |
.map(|a| a * d) | |
.collect(), | |
*d, | |
)) | |
.collect() | |
} | |
fn get_next_delta( | |
output_layer: &Layer, | |
delta: &Vec<f64>, | |
) -> Vec<f64> { | |
delta | |
.iter() | |
.enumerate() | |
.map(|(i, _)| { | |
output_layer | |
.neurons | |
.iter() | |
.map(|n| n.weights[i]) | |
.zip(delta.iter()) | |
.map(|(w, d)| w * d) | |
.sum() | |
}) | |
.collect() | |
} | |
pub fn get_gradient( | |
network: &Network, | |
error: Vec<f64>, | |
) -> Vec<Vec<(Vec<f64>, f64)>> { | |
let mut gradient: Vec<Vec<(Vec<f64>, f64)>> = Vec::new(); | |
network | |
.get_layer_pairs() | |
.iter() | |
.rfold(error, |delta, (input_layer, output_layer)| { | |
let d_output = get_d_output(&output_layer, delta); | |
gradient.insert(0, get_layer_gradient(&input_layer, &d_output)); | |
get_next_delta(&output_layer, &d_output) | |
}); | |
gradient | |
} | |
#[cfg(test)] | |
mod tests { | |
use std::rc::Rc; | |
use crate::math::Relu; | |
use super::*; | |
#[test] | |
fn gets_gradient() { | |
let mut network = Network::new( | |
vec![ | |
(2, vec![]), | |
(2, vec![]), | |
], | |
); | |
network.set_parameters(vec![ | |
vec![ | |
(vec![1.0, 1.5], 0.5), | |
(vec![0.5, 1.0], 0.5), | |
], | |
]); | |
network.get_output(&[1.0, 2.0]); | |
let gradient = get_gradient( | |
&network, | |
vec![0.5, 2.0], | |
); | |
assert_eq!( | |
gradient, | |
vec![ | |
vec![ | |
(vec![0.5, 1.0], 0.5), | |
(vec![2.0, 4.0], 2.0), | |
], | |
], | |
); | |
} | |
#[test] | |
fn gets_gradient_deep() { | |
let mut network = Network::new( | |
vec![ | |
(3, vec![]), | |
(2, vec![Rc::new(Relu)]), | |
(2, vec![]), | |
], | |
); | |
network.set_parameters(vec![ | |
vec![ | |
(vec![0.5, 1.0, 1.0], 0.5), | |
(vec![1.0, 0.0, 0.0], 0.5), | |
], | |
vec![ | |
(vec![0.5, 1.0], 0.5), | |
(vec![1.0, 1.0], 0.5), | |
], | |
]); | |
network.get_output(&[-1.0, 1.0, 1.0]); | |
let gradient = get_gradient( | |
&network, | |
vec![1.0, 0.5], | |
); | |
assert_eq!( | |
gradient, | |
vec![ | |
vec![ | |
(vec![-1.0, 1.0, 1.0], 1.0), | |
(vec![0.0, 0.0, 0.0], 0.0), | |
], | |
vec![ | |
(vec![2.0, 0.0], 1.0), | |
(vec![1.0, 0.0], 0.5), | |
], | |
], | |
); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment