Last active
December 19, 2015 02:29
-
-
Save danstowell/5883463 to your computer and use it in GitHub Desktop.
a kind of relaxed version of a changepoint model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
D <- 1 | |
N <- 100 | |
beta_a <- 0.05 | |
beta_b <- 0.5 | |
x <- structure(c(26.9413373923, 29.1350302225, 29.1582008922, 28.7840903488, 24.7588135825, 24.5383857689, 22.0150222148, 34.3357977978, 33.3175453175, 27.0393355201, 29.0391675549, 23.1313991805, 22.26141398, 20.8979942215, 25.4268018477, 29.8337205377, 31.127327082, 24.100751496, 27.5635478812, 23.8609747894, 23.9787664652, 21.6289647513, 26.669515063, 32.5843649319, 25.4968136481, 35.7060523151, 25.5803512966, 41.8961419951, 26.7957989466, 17.9698918602, 33.0624273937, 18.4957449301, 26.8025773082, 26.973815048, 27.8235580668, 20.4345371567, 23.0191935867, 27.3180574495, 35.26315069, 27.3524079853, 26.671244883, 28.1304610893, 25.4276672374, 26.9752666167, 24.0932313213, 22.4464662722, 17.8121045108, 20.2510237823, 29.0263323195, 22.4228546253, 40.6781371183, 39.0103908783, 38.3286502205, 40.3057236764, 38.8028148176, 38.4926162261, 37.8330233658, 41.8476895218, 43.5582415338, 40.9933617032, 41.6652154894, 38.7461368463, 41.6872160115, 39.1353024768, 39.6799895743, 38.0130669247, 40.3167870802, 41.966777727, 39.0184807232, 42.7684980965, 20.6920959805, 29.9048704243, 18.4098454233, 21.9488506938, 18.6524318618, 16.1213098914, 20.6599361337, 13.1551345137, 26.5358791537, 18.5118139236, 12.5105047756, 20.2924726272, 2.89016357801, 18.3037137469, 15.1159489074, 10.3759168919, 11.7802272432, 13.199743196, 13.0996584429, 12.0633674015, 18.7592769154, 22.5640197513, 15.1234925981, 11.7277881134, 18.1334624574, 23.3033279461, 5.78178129213, 17.9468316252, 22.8030632839, 15.6659776065), .Dim=c(100, 1)) | |
# true_changepoints <- [0, 50, 70] | |
# true_means <- [26.64919754508517, 40.61729705175906, 15.772935046942852] | |
# true_stdvs <- [4.516041208860003, 1.849860101333368, 6.549061725453291] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
cd ~/dev/stan/stan | |
make ~/git/stored_docs/dev/stan/gchangepoint/gchangepoint | |
cd ~/git/stored_docs/dev/stan/gchangepoint/ | |
./gchangepoint --data=data1d_gchangepoint.data.R | |
./gchangepoint --data=data1d_gchangepoint.data.R --init=init1d_gchangepoint.data.R | |
./gchangepoint --data=data1d_gchangepoint.data.R --warmup=1000 --iter=20000 | |
~/dev/stan/stan/bin/print samples.csv | |
~/dev/stan/stan/bin/print samples.csv | grep changeness | cut -c 25-29 > inferred_changeness.csv | |
xdg-open inferred_changeness.csv | |
*/ | |
data { | |
int<lower=1> D; // num dims | |
int<lower=0> N; // num observations | |
vector[D] x[N]; // obsns | |
real<lower=0> beta_a; // param for beta prior on changeness | |
real<lower=0> beta_b; // ditto | |
// - NB in our case we want to encourage sparsity in changeness, and have just a few coefs at the upper end, hence asymmetric | |
// beta possibilities: (0.05, 0.5) v strong bimodal poss too harsh, (0.6, 0.8) gentler but still good lop | |
} | |
parameters { | |
// here's the crossfade strength per transition | |
real<lower=0,upper=1> changeness[N-1]; | |
vector[D] newgen_means[N]; | |
vector<lower=0>[D] newgen_stdvs[N]; | |
} | |
model { | |
vector[D] gen_means[N]; | |
vector[D] gen_stdvs[N]; | |
changeness ~ beta(beta_a, beta_b); | |
// each datum is associated with its own generating gaussian | |
// Common prior for the brandnew (would be nice to write this without looping but stan says no) | |
for (n in 1:N){ | |
newgen_means[n] ~ normal(0.0, 100.0); | |
newgen_stdvs[n] ~ exponential(2.0); | |
} | |
// each datum's actual gaussian is some crossfaded mix | |
// x[1] is special, it simply comes from the brandnew | |
gen_means[1] <- newgen_means[1]; | |
gen_stdvs[1] <- newgen_stdvs[1]; | |
x[1] ~ normal(newgen_means[1], newgen_stdvs[1]); | |
// x[2:] is sampled from a gaussian with parameters crossfaded from the prev and the brandnew | |
for (n in 2:N) { | |
gen_means[n] <- (changeness[n-1] * newgen_means[n]) + ((1.0 - changeness[n-1]) * gen_means[n-1]); | |
gen_stdvs[n] <- (changeness[n-1] * newgen_stdvs[n]) + ((1.0 - changeness[n-1]) * gen_stdvs[n-1]); // to consider: better stdev crossfade | |
} | |
// now the obsns actually get generated | |
for (n in 1:N) { | |
x[n] ~ normal(gen_means[n], gen_stdvs[n]); | |
} | |
} | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
changeness <- structure(c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), .Dim=c(99)) | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
python makedata.py > data1d_gchangepoint.data.R | |
""" | |
import numpy as np | |
from itertools import chain | |
# Simple changepoint model - here with explicitly-chosen changepoints for easy inspection | |
n = 100 # num obs | |
d = 1 | |
beta_params = (0.05, 0.5) | |
changepoints = [0, 50, 70] # 0 must always be in here please | |
# how to sample the generating mean | |
parentgaussian_mean_mean = 30 | |
parentgaussian_mean_stdv = 10 | |
# how to sample the generating stdev | |
parentgaussian_stdv_mean = 6 | |
parentgaussian_stdv_stdv = 3 | |
x = [] # obsns | |
means = [] | |
stdvs = [] | |
# generate observations | |
for i in range(n): | |
if i in changepoints: | |
cur_mean = np.random.normal(parentgaussian_mean_mean, parentgaussian_mean_stdv) | |
cur_stdv = abs(np.random.normal(parentgaussian_stdv_mean, parentgaussian_stdv_stdv)) | |
means.append(cur_mean) | |
stdvs.append(cur_stdv) | |
x.append(np.random.normal([cur_mean], [cur_stdv])) | |
flat = list(chain.from_iterable(zip(*x))) | |
# write R data | |
print "D <- %i" % d | |
print "N <- %i" % n | |
print "beta_a <- %g" % beta_params[0] | |
print "beta_b <- %g" % beta_params[1] | |
print "x <- structure(c(" + ", ".join(map(str, flat)) + "), .Dim=c(%i, %i))" % (len(x), d) | |
print "# true_changepoints <- %s" % str(changepoints) | |
print "# true_means <- %s" % str(means) | |
print "# true_stdvs <- %s" % str(stdvs) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment