Last active
April 19, 2024 09:41
-
-
Save danstowell/f2d81a897df9e23cc1da to your computer and use it in GitHub Desktop.
Simple example of Wiener deconvolution in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Simple example of Wiener deconvolution in Python. | |
# We use a fixed SNR across all frequencies in this example. | |
# | |
# Written 2015 by Dan Stowell. Public domain. | |
import numpy as np | |
from numpy.fft import fft, ifft, ifftshift | |
import matplotlib | |
#matplotlib.use('PDF') # http://www.astrobetter.com/plotting-to-a-file-in-python/ | |
import matplotlib.pyplot as plt | |
import matplotlib.cm as cm | |
from matplotlib.backends.backend_pdf import PdfPages | |
plt.rcParams.update({'font.size': 6}) | |
########################## | |
# user config | |
sonlen = 128 | |
irlen = 64 | |
lambd_est = 1e-3 # estimated noise lev | |
########################## | |
def gen_son(length): | |
"Generate a synthetic un-reverberated 'sound event' template" | |
# (whitenoise -> integrate -> envelope -> normalise) | |
son = np.cumsum(np.random.randn(length)) | |
# apply envelope | |
attacklen = length / 8 | |
env = np.hstack((np.linspace(0.1, 1, attacklen), np.linspace(1, 0.1, length - attacklen))) | |
son *= env | |
son /= np.sqrt(np.sum(son * son)) | |
return son | |
def gen_ir(length): | |
"Generate a synthetic impulse response" | |
# First we generate a quietish tail | |
son = np.random.randn(length) | |
attacklen = length / 2 | |
env = np.hstack((np.linspace(0.1, 1, attacklen), np.linspace(1, 0.1, length - attacklen))) | |
son *= env | |
son *= 0.05 | |
# Here we add the "direct" signal | |
son[0] = 1 | |
# Now some early reflection spikes | |
for _ in range(10): | |
son[ int(length * (np.random.rand()**2)) ] += np.random.randn() * 0.5 | |
# Normalise and return | |
son /= np.sqrt(np.sum(son * son)) | |
return son | |
def wiener_deconvolution(signal, kernel, lambd): | |
"lambd is the SNR" | |
kernel = np.hstack((kernel, np.zeros(len(signal) - len(kernel)))) # zero pad the kernel to same length | |
H = fft(kernel) | |
deconvolved = np.real(ifft(fft(signal)*np.conj(H)/(H*np.conj(H) + lambd**2))) | |
return deconvolved | |
if __name__ == '__main__': | |
"simple test: get one soundtype and one impulse response, convolve them, deconvolve them, and check the result (plot it!)" | |
son = gen_son(sonlen) | |
ir = gen_ir(irlen) | |
obs = np.convolve(son, ir, mode='full') | |
# let's add some noise to the obs | |
obs += np.random.randn(*obs.shape) * lambd_est | |
son_est = wiener_deconvolution(obs, ir, lambd=lambd_est)[:sonlen] | |
ir_est = wiener_deconvolution(obs, son, lambd=lambd_est)[:irlen] | |
# calc error | |
son_err = np.sqrt(np.mean((son - son_est) ** 2)) | |
ir_err = np.sqrt(np.mean((ir - ir_est) ** 2)) | |
print("single_example_test(): RMS errors son %g, IR %g" % (son_err, ir_err)) | |
# plot | |
pdf = PdfPages('wiener_deconvolution_example.pdf') | |
plt.figure(frameon=False) | |
# | |
plt.subplot(3,2,1) | |
plt.plot(son) | |
plt.title("son") | |
plt.subplot(3,2,3) | |
plt.plot(son_est) | |
plt.title("son_est") | |
plt.subplot(3,2,2) | |
plt.plot(ir) | |
plt.title("ir") | |
plt.subplot(3,2,4) | |
plt.plot(ir_est) | |
plt.title("ir_est") | |
plt.subplot(3,1,3) | |
plt.plot(obs) | |
plt.title("obs") | |
# | |
pdf.savefig() | |
plt.close() | |
pdf.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, I am certainly trying to hijack your code and you use it for a completely different purpose compared to what it was designed initially... but, I would like to perform a wiener deconvolution of a signal made of several Gaussians that are simply convolved with an ellipsoide profile. In this case though, the algorithm seems to completely fail the reconstruction, do you have any idea what could be wrong ? Is there any assumptions behind the shape of the signals (length, positivity,...) ?