Last active
April 3, 2017 06:01
-
-
Save dantalus/d619b129867aee7ed4063e31d13ee2e5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Table 1 | |
# A basic, descriptive table that you would usually see as Table 1 in a | |
# publication | |
# Tests if multiple groups (data$arm) | |
tests.1 <- function(data, ...) { | |
tests.list <- list() | |
require(dplyr) | |
require(broom) | |
for (j in seq_along(data)) { | |
if(is.numeric(data[[j]])){ | |
t <- aov(data[[j]] ~ arm, data) %>% | |
tidy() | |
tests.list[[j]] <- round(t$p.value[1], 2) | |
} | |
if(is.factor(data[[j]])){ | |
c <- table(data[[j]], data$arm) %>% | |
chisq.test() %>% | |
tidy() | |
tests.list[[j]] <- c(round(c$p.value[1], 2), | |
rep("", length(levels(data[[j]])))) | |
} | |
} | |
unlist(tests.list) | |
} | |
tests.2 <- function(data, ...) { | |
tests.list <- list() | |
require(dplyr) | |
require(broom) | |
for (j in seq_along(data)) { | |
if(is.numeric(data[[j]])){ | |
k <- kruskal.test(data[[j]] ~ arm, data) %>% | |
tidy() | |
tests.list[[j]] <- round(k$p.value[1], 2) | |
} | |
if(is.factor(data[[j]])){ | |
c <- table(data[[j]], data$arm) %>% | |
chisq.test() %>% | |
tidy() | |
tests.list[[j]] <- c(round(c$p.value[1], 2), | |
rep("", length(levels(data[[j]])))) | |
} | |
} | |
unlist(tests.list) | |
} | |
# Generate the list of names for the table | |
name.1 <- function(x, ...) { | |
var.names <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
var.names[[i]] <- names(x[i]) | |
} | |
if(is.factor(x[[i]])){ | |
var.names[[i]] <- c(names(x[i]), levels(x[[i]])) | |
} | |
} | |
unlist(var.names) | |
} | |
# Means(sds) or counts(%) | |
summary.1 <- function(x, ...) { | |
summary.list <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
summary.list[[i]] <- paste0(round(mean(x[[i]], na.rm = TRUE), 1), | |
" \u00B1 ", | |
round(sd(x[[i]], na.rm = TRUE), 1)) | |
} | |
if(is.factor(x[[i]])){ | |
summary.list[[i]] <- c("", paste0(table(x[[i]]), | |
" (", | |
round(table(x[[i]]) / | |
sum(table(x[[i]])), 3) * 100, | |
"%)")) | |
} | |
} | |
unlist(summary.list) | |
} | |
summary.2 <- function(x, ...) { | |
summary.list <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
summary.list[[i]] <- paste0(round(quantile(x[[i]], probs = c(0.50), | |
na.rm = TRUE), 1), | |
" [", | |
round(quantile(x[[i]], probs = c(0.25), | |
na.rm = TRUE), 1), | |
", ", | |
round(quantile(x[[i]], probs = c(0.75), | |
na.rm = TRUE), 1), | |
"]") | |
} | |
if(is.factor(x[[i]])){ | |
summary.list[[i]] <- c("", paste0(table(x[[i]]), | |
" (", | |
round(table(x[[i]]) / | |
sum(table(x[[i]])), 3) * 100, | |
"%)")) | |
} | |
} | |
unlist(summary.list) | |
} | |
# Missing observations | |
n.miss <- function(x, ...) { | |
miss.list <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
miss.list[[i]] <- length(x[[i]][!is.na(x[[i]])]) | |
} | |
if(is.factor(x[[i]])){ | |
miss.list[[i]] <- c(length(x[[i]][!is.na(x[[i]])]), | |
rep("", length(levels(x[[i]])))) | |
} | |
} | |
unlist(miss.list) | |
} | |
# Min and max | |
min.max <- function(x, ...) { | |
min.max.list <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
min.max.list[[i]] <- paste0("(", | |
round(min(x[[i]], na.rm = TRUE), 1), | |
", ", | |
round(max(x[[i]], na.rm = TRUE), 1), | |
")") | |
} | |
if(is.factor(x[[i]])){ | |
min.max.list[[i]] <- c("", rep("", length(levels(x[[i]])))) | |
} | |
} | |
unlist(min.max.list) | |
} | |
# Quartiles | |
tiles <- function(x, ...) { | |
quantiles.list <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
quantiles.list[[i]] <- paste0(round(quantile(x[[i]], probs = c(0.25), | |
na.rm = TRUE), 1), | |
", ", | |
round(quantile(x[[i]], probs = c(0.50), | |
na.rm = TRUE), 1), | |
", ", | |
round(quantile(x[[i]], probs = c(0.75), | |
na.rm = TRUE), 1)) | |
} | |
if(is.factor(x[[i]])){ | |
quantiles.list[[i]] <- c("", rep("", length(levels(x[[i]])))) | |
} | |
} | |
unlist(quantiles.list) | |
} | |
# Median, IQR | |
med.iqr <- function(x, ...) { | |
quantiles.list <- list() | |
for (i in seq_along(x)) { | |
if(is.numeric(x[[i]])){ | |
quantiles.list[[i]] <- paste0(round(quantile(x[[i]], probs = c(0.5), | |
na.rm = TRUE), 1), | |
" (", | |
round(quantile(x[[i]], probs = c(0.25), | |
na.rm = TRUE), 1), | |
", ", | |
round(quantile(x[[i]], probs = c(0.75), | |
na.rm = TRUE), 1), | |
")") | |
} | |
if(is.factor(x[[i]])){ | |
quantiles.list[[i]] <- c("", rep("", length(levels(x[[i]])))) | |
} | |
} | |
unlist(quantiles.list) | |
} | |
# Select the data | |
table.1.data <- select(data, | |
var1, var2) | |
# Give more descriptive names | |
colnames(table.1.data) <- c("var1", "var2") | |
# Give factor levels better names if neeed | |
# Put it all together | |
data_frame(Variable = name.1(x), | |
Obs = n.miss(x), | |
col2 = summary.1(x), | |
"(Min, Max)" = min.max(x), | |
"25th, 50th, 75th quantiles" = tiles(x)) %>% | |
# Export html table for Word | |
stargazer(type = "html", | |
summary = FALSE, | |
out = "table1.htm", | |
digits = 1, rownames = FALSE) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment