Last active
April 9, 2024 06:27
-
-
Save dantonnoriega/092d04deba671f65b7a99a244c957c9d to your computer and use it in GitHub Desktop.
A simple example of a difference-in-difference analysis in python using simulated data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import statsmodels.api as sm | |
# Set random seed for reproducibility | |
np.random.seed(42) | |
# Generate synthetic data | |
n_obs = 100 | |
time = np.arange(n_obs) | |
treatment = np.concatenate((np.zeros(n_obs // 2), np.ones(n_obs // 2))) | |
time_treatment = time * treatment | |
control_trend = 1 + 0.1 * time + np.random.normal(0, .2, n_obs) | |
treatment_trend = 3 + .13 * time + .13 * np.maximum(0, time - sum(treatment)) * treatment + np.random.normal(0, .2, n_obs) | |
intervention_time = n_obs // 2 # Intervention at the middle | |
# Create a DataFrame | |
data = pd.DataFrame({ | |
'time': time, | |
'time_treatment': time_treatment, | |
'treatment': treatment, | |
'control_trend': control_trend, | |
'treatment_trend': treatment_trend | |
}) | |
# Define the outcome variable | |
data['outcome'] = data['control_trend'] + data['treatment_trend'] | |
data.loc[data['time'] >= intervention_time, 'outcome'] += 2 # Effect of intervention | |
# Run difference-in-differences regression | |
## y = t + d + t:d | |
model = sm.OLS(data['outcome'], sm.add_constant(data[['time', 'treatment', 'time_treatment']])) | |
results = model.fit() | |
# Print regression results | |
print(results.summary()) | |
# Create a plot | |
plt.figure(figsize=(10, 6)) | |
plt.plot(data['time'], data['control_trend'], label='Control Trend') | |
plt.plot(data['time'], data['treatment_trend'], label='Treatment Trend') | |
plt.axvline(x=intervention_time, color='gray', linestyle='--', label='Intervention Time') | |
plt.annotate('Intervention', xy=(intervention_time, 3.5), xytext=(intervention_time + 5, 4.5), | |
arrowprops=dict(arrowstyle='->'), fontsize=12) | |
plt.xlabel('Time') | |
plt.ylabel('Trends') | |
plt.title('Near-Parallel Trends Before Intervention') | |
plt.legend() | |
plt.grid(True) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment