Last active
March 18, 2023 14:35
-
-
Save dantp-ai/3514370d07c51a1bb80da32ba32928d6 to your computer and use it in GitHub Desktop.
2d convolution for stride of one with same output shape
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def convolve2D_same_output_shape(input_volume, kernel): | |
kernel = np.flipud(np.fliplr(kernel)) | |
kernel_height = kernel.shape[0] | |
kernel_width = kernel.shape[1] | |
input_height = input_volume.shape[0] | |
input_width = input_volume.shape[1] | |
padding_height = int((kernel_height - 1) / 2) | |
padding_width = int((kernel_width - 1) / 2) | |
output_volume_height = (input_height - kernel_height + 2*padding_height) + 1 | |
output_volume_width = (input_width - kernel_width + 2*padding_width) + 1 | |
output = np.zeros((output_volume_height, output_volume_width)) | |
assert output.shape == input_volume.shape, f"Expected output.shape == {input_volume.shape}. Got {output.shape}." | |
input_padded = np.zeros(( | |
input_height + 2*padding_height, | |
input_width + 2*padding_width | |
)) | |
input_padded[ | |
int(padding_height):int(-1 * padding_height), | |
int(padding_width): int(-1*padding_width) | |
] = input_volume | |
for x in range(input_height): | |
for y in range(input_width): | |
output[x, y] = (kernel * input_padded[x: x + kernel_height, y:y + kernel_width]).sum() | |
return output | |
if __name__ == "__main__": | |
kernel = np.array( | |
[ | |
[-1, -1, -1], | |
[-1, 8, -1], | |
[-1, -1, -1] | |
] | |
) | |
image = np.random.randint(0, 255, size=(128, 128)) | |
output = convolve2D_same_output_shape(image, kernel) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment