Created
June 12, 2025 00:54
-
-
Save danyaljj/c3ab99bf832b0e4812c5072e30a966d6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
# Set seed for reproducibility | |
np.random.seed(123) | |
# Parameters | |
T = 10000 # number of time steps | |
s = 0.01 # step size | |
dim = 2 # 2D space | |
# Initialize Langevin dynamics | |
z = np.zeros((T, dim)) | |
z[0] = np.array([4.0, -3.0]) # Initial position | |
# Langevin update: z_{t+1} = z_t - s * grad U(z_t) + sqrt(2s) * N(0, I) | |
# where grad U(z) = z for standard Gaussian | |
for t in range(T - 1): | |
grad_U = z[t] | |
noise = np.sqrt(2 * s) * np.random.randn(dim) | |
z[t + 1] = z[t] - s * grad_U + noise | |
# Plot trajectory and samples | |
fig, ax = plt.subplots(figsize=(7, 7)) | |
# Plot trajectory path | |
ax.plot(z[:, 0], z[:, 1], color='gray', alpha=0.3, linewidth=1, label='Trajectory') | |
# Use second half of samples for visualization (post burn-in) | |
samples = z[int(T/2):] | |
ax.scatter(samples[:, 0], samples[:, 1], s=2, alpha=0.4, label='Samples') | |
# Mark the starting and final points | |
ax.plot(z[0, 0], z[0, 1], 'ro', label='Start') | |
ax.plot(z[-1, 0], z[-1, 1], 'go', label='End') | |
# Styling | |
ax.set_title("2D Langevin Dynamics Trajectory and Samples") | |
ax.set_xlabel("z₁") | |
ax.set_ylabel("z₂") | |
ax.set_aspect('equal') | |
ax.grid(True) | |
ax.legend() | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment