Last active
November 9, 2018 15:46
-
-
Save darden1/2b0fcb8c3811d9911b95696d8e24a3de to your computer and use it in GitHub Desktop.
keras_simplernn_return_sequences_false.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ターゲットデータを最終時間のみにする | |
Y_train_rsf, Y_val_rsf = Y_train[:, -1, :], Y_val[:, -1, :] | |
model_rsf = Sequential() | |
model_rsf.add(SimpleRNN(rnn_units, input_shape=(n_sequence, n_features), return_sequences=False)) | |
model_rsf.add(Dense(n_classes, activation="linear")) | |
model_rsf.compile(loss='mean_squared_error', optimizer=SGD(lr)) | |
history_rsf = model_rsf.fit(X_train, Y_train_rsf, | |
batch_size=batch_size, | |
epochs=n_epochs, | |
validation_data=(X_val, Y_val_rsf), | |
shuffle=True, | |
verbose=2) | |
plt.plot(indices, history_rst.history["loss"], label="loss (return_sequences=True)") | |
plt.plot(indices, history_rst.history["val_loss"], label="val_loss (return_sequences=True)") | |
plt.plot(indices, history_rsf.history["loss"], label="loss (return_sequences=Frue)") | |
plt.plot(indices, history_rsf.history["val_loss"], label="val_loss (return_sequences=Frue)") | |
plt.legend(loc="best") | |
plt.title("train history") | |
plt.xlabel("epochs") | |
plt.ylabel("loss") | |
plt.grid(True) | |
plt.show() | |
Y_pred_rsf = model_rsf.predict(X) | |
plt.plot(T, Y[:, -1, :], label="true") | |
plt.plot(T, Y_pred_rst[:, -1, :], label="pred (return_sequences=True)") | |
plt.plot(T, Y_pred_rsf, label="pred (return_sequences=False)") | |
plt.legend(loc='best') | |
plt.title("true and pred") | |
plt.xlabel("time") | |
plt.ylabel("amplitude") | |
plt.xlim([0, 1]) | |
plt.ylim([-2, 2]) | |
plt.grid(True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment