Last active
November 8, 2018 12:58
-
-
Save darden1/4ce1248902ca952a8ee0f2c5fed859e9 to your computer and use it in GitHub Desktop.
keras_simplernn_return_sequences_trye.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers import Dense, SimpleRNN | |
from keras.optimizers import SGD | |
n_train = 80 | |
X_train, X_val = X[:n_train], X[n_train:] | |
Y_train, Y_val = Y[:n_train], Y[n_train:] | |
batch_size = 10 | |
n_epochs = 200 | |
lr = 0.001 | |
rnn_units = 128 | |
n_features = X.shape[-1] | |
n_classes = Y.shape[-1] | |
model_rst = Sequential() | |
model_rst.add(SimpleRNN(rnn_units, input_shape=(n_sequence, n_features), return_sequences=True)) | |
model_rst.add(Dense(n_classes, activation="linear")) | |
model_rst.compile(loss='mean_squared_error', optimizer=SGD(lr)) | |
history_rst = model_rst.fit(X_train, Y_train, | |
batch_size=batch_size, | |
epochs=n_epochs, | |
validation_data=(X_val, Y_val), | |
shuffle=True, | |
verbose=2) | |
indices = range(n_epochs) | |
plt.plot(indices, history_rst.history["loss"], label="loss") | |
plt.plot(indices, history_rst.history["val_loss"], label="val_loss") | |
plt.legend(loc="best") | |
plt.title("train history") | |
plt.xlabel("epochs") | |
plt.ylabel("loss") | |
plt.grid(True) | |
plt.show() | |
Y_pred_rst = model_rst.predict(X) | |
plt.plot(T, Y[:, -1, :], label="true") | |
plt.plot(T, Y_pred_rst[:, -1, :], label="pred") | |
plt.legend(loc='best') | |
plt.title("true and pred") | |
plt.xlabel("time") | |
plt.ylabel("amplitude") | |
plt.xlim([0,1]) | |
plt.ylim([-2,2]) | |
plt.grid(True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment