Created
November 8, 2018 13:31
-
-
Save darden1/a6131e98b5d586b7de0d7f31aee5fa49 to your computer and use it in GitHub Desktop.
myrnn_retur_sequences_true.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model_myrnn_rst = RecurrentNeuralNetwork(rnn_units, return_sequences=True) | |
model_myrnn_rst.fit(X_train, Y_train, | |
batch_size=batch_size, | |
epochs=n_epochs, | |
mu=lr, | |
validation_data=(X_val, Y_val), | |
verbose=1) | |
plt.plot(indices, history_rst.history["loss"], label="loss (keras)") | |
plt.plot(indices, history_rst.history["val_loss"], label="val_loss (keras)") | |
plt.plot(indices, model_myrnn_rst.loss, label="loss (my rnn)") | |
plt.plot(indices, model_myrnn_rst.val_loss, label="val_loss (my rnn)") | |
plt.legend(loc="best") | |
plt.title("train history") | |
plt.xlabel("epochs") | |
plt.ylabel("loss") | |
plt.grid(True) | |
plt.show() | |
Y_pred_myrnn_rst = model_myrnn_rst.predict(X) | |
plt.plot(T, Y[:, -1, :], label="true") | |
plt.plot(T, Y_pred_rst[:, -1, :], label="pred (keras)") | |
plt.plot(T, Y_pred_myrnn_rst[:, -1, :], label="pred (my rnn)") | |
plt.legend(loc='best') | |
plt.title("true and pred") | |
plt.xlabel("time") | |
plt.ylabel("amplitude") | |
plt.xlim([0,1]) | |
plt.ylim([-2,2]) | |
plt.grid(True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment