Last active
April 16, 2018 10:53
-
-
Save darden1/bb7f75994fe21b71d8ff47d791294def to your computer and use it in GitHub Desktop.
train_with_keras_mlp.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers.core import Dense, Activation | |
from keras.optimizers import SGD | |
from keras.losses import categorical_crossentropy | |
from keras.initializers import he_normal | |
n_features = X.shape[1] | |
n_classes = Y.shape[1] | |
batch_size = int(len(X_train)*0.2) # ミニバッチサイズ | |
epochs = 100 # エポック数 | |
mu = 0.05 # 学習率 | |
random_state = 1 | |
np.random.seed(random_state) | |
model = Sequential() | |
model.add(Dense(10, activation='relu', kernel_initializer=he_normal(seed=random_state), bias_initializer='zeros', input_shape=(n_features,))) | |
model.add(Dense(10, activation='relu', kernel_initializer=he_normal(seed=random_state), bias_initializer='zeros')) | |
model.add(Dense(10, activation='relu', kernel_initializer=he_normal(seed=random_state), bias_initializer='zeros')) | |
model.add(Dense(n_classes, activation='softmax', kernel_initializer=he_normal(seed=random_state), bias_initializer='zeros')) | |
#model.summary() | |
model.compile(loss=categorical_crossentropy, optimizer=SGD(lr=mu), metrics=['accuracy']) | |
history = model.fit(X_train, Y_train, # トレーニングデータ | |
batch_size=batch_size, # バッチサイズ | |
epochs=epochs, # 総エポック数 | |
validation_data=(X_test, Y_test), # テストデータ | |
shuffle=False, # エポック毎にデータをシャッフルしない | |
verbose=0) # 学習履歴をprintしない | |
print("acc_train: "+ str(history.history['acc'][-1]) + " acc_test: "+ str(history.history['val_acc'][-1])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment