Skip to content

Instantly share code, notes, and snippets.

@darkblue-b
Created February 3, 2015 23:10
Show Gist options
  • Save darkblue-b/31ae5f7ec29c00b7ef4f to your computer and use it in GitHub Desktop.
Save darkblue-b/31ae5f7ec29c00b7ef4f to your computer and use it in GitHub Desktop.
bernt nghbd example0
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:fcea1b22e187db4c83626fb3ce2d03cdcac3fec4ef3f1434e1c75577e1b25bdf"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import psycopg2\n",
"\n",
"conn = psycopg2.connect(\"dbname=bernt_work_i7d\")\n",
"curs = conn.cursor()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"conn.rollback()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 36
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Bernt Neighborhoods - Feb ASK*\n",
"\n",
"show some basic information about a table of geometry in Postgres\n",
"\n",
" bernt_work_i7d=# \\d nb_ask_final\n",
"\n",
" gid | integer | not null default nextval('ask_final_gid_seq'::regclass)\n",
" id | bigint | \n",
" state | character varying(4) | \n",
" city | character varying(40) | \n",
" neighborho | character varying(50) | \n",
" subneighbo | character varying(40) | \n",
" ward | character varying(40) | \n",
" district | character varying(40) | \n",
" metro | character varying(40) | \n",
" submetro | character varying(40) | \n",
" stplace | character varying(90) | \n",
" the_geom | geometry | \n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t_sql = '''\n",
"Select state, count(*) from nb_ask_final group by state order by count(*) desc\n",
"'''\n",
"curs.execute(t_sql)\n",
"#print curs.fetchall()\n",
"t_states = []\n",
"t_counts = []\n",
"for elem in curs.fetchall():\n",
" t_states.append(elem[0])\n",
" t_counts.append(elem[1])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 29
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#plt.barh?\n",
"#plt.yticks?"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 30
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print 'How many states are represented ? ',len(t_states)\n",
"\n",
"##plot a few at a time\n",
"p1 = t_states[0:14]\n",
"p2 = t_counts[0:14]\n",
"\n",
"y_pos = np.arange(len(p1))\n",
"y_pos += 1\n",
"\n",
"plt.barh( y_pos, p2, align='center', alpha=0.4, height=1.1)\n",
"plt.yticks(y_pos, t_states, rotation=42, size='small')\n",
"plt.xlabel('Count')\n",
"plt.title('Bernt Neighborhoods Count (largest), by State')\n",
"\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"How many states are represented ? 118\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEZCAYAAABy91VnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW5+PHvZCcQdgKEhIBKIMgmoAioDLmKBAThqiBX\nEUQvCheJIIKiQi4gmwt6EVmUgCCIsl6QC4LCEEQBQRJUNkEIhCUkMQyLBJhkfn+81b+umUzPVHfX\n9Dbfz/PMM91d3VXndFe9derUqbdAkiRJkiRJkiRJkiRJkiRJanivABtlfO9y4G0lph0M3JlDeQo6\ngM/lOL9SDibfcjeK0cDfgHWT5xcDJ9etNNndA2xexvsvpjnq1TKG1bsAg+wp4F9EYPwn8Gtg4iAv\nb1o/09uJwHtOr9d/DxyUcRnjkuU0mu7kr5F9GJgNvAy8SOyY9qrBcp+i//UC4FDgDmBB8rwRv8+L\nWTFAfxc4qYx55FmvjwJzgE5gIfA7ig2gmcClZcyrHXgmp3I1lFYP8t3AR4jAuD6xAZ1d4bxGZFxe\n2wDveQ34NDC51+cabYMuR5bvpt4+DvyKCFQbAOOBE6hNkM+yXnyBFYPSQJ/pS1uFn6vUDcCuFI9A\nssijfO8AfgYcBawGbEw0npblMG81kSfp2YLaA3g09Xw00RKZB7wAnAuMSaa1A/OBY4HngUuAE4lA\n8TOiNfhXYLvk/ZcSK1jhyOGYPsrTTrQWfgjMSr1+J/CZ1PNDgIeIo4+bgQ1T09JdMGsRG1kncC9w\nCj27MpYTweMxYAnwo9S0g4kjiLOBl4CH6fldTQCuBxYDfwc+n5o2E7gqqXMn0U1zO9Gi+z3x3fwm\nKV/B3kR3xJLkvZulpk0lWtVLiO80HXjXSsrRSXQNnJyqYxtwFrHz7gQeBN7JitqAp4Gv9DEt/Z5v\nEq3uBcRvvGoyrZ0VW3lPUfy+ZlLderFhMj3d6LqIYqt5DeIo9EVinbiB2FEVdBC//V3JfN4G7Eas\n6y8Rwe8Oenan9beO9fWdHgq8CbyR1ON/U++/hZ7rb38uIrazW4jvqiO17HOI7THteuDLfczn48AD\nJZaxe1LON5OyFt73WaLOLwNPEHUCWBl4nfidXkmmr0esE18DHgcWAb8kfgs1kCeBf0sejyU2wotT\n088CrgNWB1YhVqhTk2ntwFvAacBIIvjPJFaG3YkV4FTgj72WN1B3zTNEq6cTmJK8ng7yHyWC6qbE\nRv8NYuMtSAf5K4DLk7JNJQLZ7F7vvZ4IVpOIIPHhZNrBSf1mAMOB/YiAsHoyfTaxUxgFbJ18dtdk\n2kxiA9o7eT6G2FgfJ1pYY4hAfloyfQrwKvFbDAe+mtRxBPHdPk5sTCOSZbyc+m6uSP5WIoLN/FQd\nPwzcRzEYb0psnL1tlnwXk/uYVnBIUqaNiI3+amLHDn0H+fRvPZPq1os9iR1DWjrIrwnsS3yvqxA7\nlGtT7+0gdjpTiXVmHWL92id5fiTxex2SvL+/day/7/Qi+u6a+SHwvX7ql3Yx8fu+j1i3fkBxp/1u\n4FmKLf21iSPfdfqYz8bEd/594vdZpdf0Eyn+fgV7JJ8D+EAy73clz3dhxd94BvAHosEzEjiP2N7U\nQJ4i9sxLiJV8PrBFMq2NCDzpE5M7Av9IHrcTrYFRqekziRZIweZEy6kga5AHOIMIXtAzyN9EcWOE\n2AhfI4I0FIP88KROm6Tem27lFt67U+r5L4HjkscHExtU2j1EV9IkoIsIdgWnEhs5xPfQ0euztwPH\np54fltQF4FsU6wrx3c8nNqz3E0dKaZcTG2mhjlNS075NsY7TiNbqDvTf9bgz8V2M6uc9vwO+mHo+\nJVn2MLIF+WrWi0/Rc6cAPYN8b9sQLfCC25MyFHyGng0DiAZAYb0qtY5tSOxkS32npcp0CnBhibL2\ndjE9A+XKxLpWODJ5CPhg8vgI4gimlB2IdfpFIuBfRHGdncnAffLXEjtA6Ps3foiev9v6FNeJptFU\nha1AN9FqWYPomvkScdg6nmgdjAXuJ3YCS4iVf+3U5xcSP2ragtTjfxGtq0q+xzOJVtNWvV6fTLSM\nCmVanLy+Qa/3rUO0fNMr5vw+lvNCr/KmA3fvID+PWJHXJ4LIa6lpT/cqw0DLep1i62pC8vmC7qTc\nGyTL6r1xzUs+szYr1jE9n9uIo41ziN/lfOL8S2+F73D9PqaRmjav13JGkL2vuZr1Ygl9l7tgLFG3\np4gW+h1EP3S6bzv9HU1gxd8n/bzUOjaB2GFk+U7TVk3mk0V3r7K8RqxrE5LnlxANDZL//QXqe4D9\nie35/UTr/Bv9vH86cDdR3yVEy36tft6/EbEjKHxPDxE7pHLOP9Rdqwf5tG7iB1tGHCouIgLR5sRO\nYA2iq2LVXp/pPY+BlpHVYuJQ9ZRerz9N9BWukfpbmVg50xYSK9yk1GuTKE/vHcdk4Lnkb016HgJv\nSM+Ns5y6PkvPrpI2oqzzk2VNomfAmpx8plDHdH9x+jHEOYXtid9xCtEV1NujRBD8eD9lfI6eQ1M3\nTJa9gAhEY1PThtN3F0IpA31XDxLdCL23x8LnvkLU7T1EcN+FFU+wppfxHD1HkbX1ej7QOlbqOy1V\nj6nA3FKV60N6PV2FWNeeS57/nGiYbU10s12XcZ73Edt34ZxM77KOJrrgziR2CmsA/0fxO+yrbk8T\nXXDp72ksKx55NrShEOTbUv8LrfqHicP3nxCBtrDBbkCcsBpoXqUsAN5eRtm+T3QRTU29dh7R7VEY\ne7wa8Ik+PrsMuIY4LF2J2CAOpP+A0jswjCcOV0cmy9iMWPHnE32RpxEbx1bE4f3PB6hPqe/nSqLf\neVqyrK8AS5Nl3Eu0fI9NprUTI6KuIH6jdB03J4aaFuq4PXHIPjKZx1L6Hl3RDRxNdBsdTOzIhxE7\n+/OT9/yCGKmxERF4Tk2V4TGiZb5HsqxvJt9LVgOtF/OJ8xI7pF5L/1arEA2STiIgntjHPNLf/Y3A\nlsT6PgL4L3qeq+hvHevvO13AitddjAG2BW5NvbacaFX3pY34Hncmus9OJrqqCkeV84mAfQlxcv+N\nEvPZmRgMUNh2NyNO2Bd2VC8Qv2XhexmV/C1Kyjedntv6AqJVn27knUesB4WGxToUz0M1jaEQ5G8g\n+uU7iRXqM0SQh+iffpxYMTqJFTXd/9tXS76/1v1pRABYQgSVvqTf/wrRskifsb+OYn99J/AXiidL\ne3/+CGIDfYE4qfwLenYv9Vf+bqLemxAt5pOBj1E87D6A2EieIwLtCUT3SO/5lKpb+j2PEofeZyfL\n2pPYILuS8u5FbHQLia6CA4nAWqjjKkkdZ9FzVNKqwAXE4f5TxAb8nT7KBdGK25/YWT2bzO8kii3F\nWUTXwGzivMy/iO49iN/hcOCnRBB6lZ7dI3msF+cT9e5rnj8gdnKLiB3jTQMsbzERtM9MPjOVCJyF\ngNnfOtbfd3ohsWNYQqwTEL/d7RS76iYR6/VfStSzG7iM2FEtJk58frrXe35G7KT666p5iQi4f0mW\nd1NSpjOT6Vcm/xcndX+FaND8KqnbAfQcIfQIsf38I5m+HtGldT3FkUB/JI6mpLo5g+LJUTWXUfS8\n4jVPw4gd2y6DMO+76XnF66eIk+PVeD89z49IQ9amRFdKG9HCWEgTHk5qUOxGnGMaTRxFPEt5XUz1\nMpI46vpmvQsiNYLtifHOrxGHmcf1/3YNIScSXS2FboZ317c4mUwlusJ+z4rj3iVJkiRpCKllIiO2\n3nrr7rlzyxlOK0lD3lziKueK1HQI5dy5c+nu7m7JvxNPPLHuZbB+1s/6td4fcWFYxYbCOHlJGrIM\n8pLUwgzyOWlvb693EQaV9Wtu1m/oqumJV6A76WOSJGXQ1tYGVcRqW/KS1MIM8pLUwgzyktTCDPKS\n1MIM8pLUwgzyktTCDPKS1MIM8pLUwgzyktTCDPKS1MIM8pLUwgzyktTCDPKS1MIM8pLUwkbUeoHf\n+MYFtV5kyxk/fjQzZhxU72JIagI1D/KTJx9a60W2nHnz3FFKyqba7ppa33REklSGSoP82sn/wm2e\nDPaS1IAqCfJbAlcDHwTWSF7rrnBekqRBVG6f/A7ANCK4fwTYBOgCfgIsT97TRrGFL0mqo3KC/Fhg\nV2A2MB8YA1wKPAisBtwJ3IMBXpIaRjldLP8CngBOAZYAi4CjgfuA54EDgS/lXUBJUuWytOQ/CfyG\nCOxXEl002wAfAp4DDkjedxXwxkAzu+GGmf//8ZQp7Wy6aXs55ZWkltbR0UFHR0du8xtoVEwb8GNg\nATAKOB7YF1gJ+DvwMWAmEdyzdNN0n3++vTnVmjfvAr79ba83kIaCtrY2qGIE40DdNd3A4cB5wCTg\nDKIv/jhgc6ILZx3sh5ekhpSlT74beIHoc38UWBUYD0wFbgGeGbTSSZKqUu4QylnJ/9WBu4C78y2O\nJClPleauOSPXUkiSBkWt0xF0T59+R40X2Xo6Oy+nvX1bs1FKQ0C1J17zykI5jOIVrwN4JKdFDl0T\nJ+7I5MkHmY1S0oCqDfLtwFxiDH2mdAb77OPQP0mqlWqTin0A+BWxs+jGbJSS1FAqDfK7JP9PAm4H\nfp48N9BLUgOpJMgfDPwUuAg4CPgOsJDiiBsDvSQ1iHKD/B7A54HfExdIbQ5cQJxN3R/4WvI+r4CV\npAZQ7onXu4AbiO6apURemzWT+TwHnAo8BlxTagYmKJOk0mqdoKwvawNHELnl7wd+SeSRXwPYAPhr\nP581QVmOTFQmtb56jJNfRPTJrwxsBfwH8BbwADGUUpLUICodXTMfOJ/ootkSeB374SWp4VRzMdTj\nwFlE3/xj+RRHkpSnaq94fTCXUkiSBkW1V7xKkhqYWSibWCEbZYFZKaXW0yhZKMtgFsq8FLJRFpiV\nUlJveQT5MtIMm4VSkmqp0j75LYiUBhAB3lw1ktSAKmnJjwGuBZ4HbgVOJnYWy4DhyX9JUgMoN8hP\nIcbEHwZMADZLHi8HLgS6ci2dJKkq5XTXHA+cBmxHtOYnJq9NITJQngPsCIzLuYySpAplbcmfQKQv\nOBRYnLzWDswhkpNNAz4HbALc3d+MzEIpSaXVKwvld4DvETnkxxCpDNYDTie6a14n2z1ezUI5iMxK\nKbWeasfJZ+2uWQv4dPJ4KXEE8CYxwmbr5HWjtyQ1mKxB/lJgLLBT8rwr+ewE4mbekqQGlLVP/k4i\nd/yewHuB2cCZwDHAFYNTNElStbIG+S7gXOLk6xHEHaB+RD+3+ZMk1V854+TfJG73d0jy3D54SWpw\nZqFsIYWslGajlFpHPbNQTgHeBtxc3sfMQjlYClkpzUYpqaCaIL8RcCDwOyJfTaZMlGahlKTaqSQL\n5TZE6oIngH8AbxEB3rtMSVKDKTcwfx34DXA28FngYIrj5DPnlJck1UY53TXfBLYH3k5cATsR2I1I\nNXwjsAT4NZGCWJLUALK25M8AjgIWAq8CTwN3ETltbgXuI7JTHlJqBpKk2svSkt8HWJdovf8SmJn8\nAaxKpDu4LfkbkFkoJam0emWhLFgNuJq4M9Q5wHjgVOAbwIIMnzcLZQ2YjVJqHbUcJz8K6AQOAi4n\n+uCvTv6yBHhJUo2VM7rmTeIers8CRxKt91WBmwahXJKkHJQ7hLJws+65xJ2hFuZdIElSfiq5gGlZ\n8n9RngWRJOWvmqtUPYMqSQ2umtw1Fbnuutm1XuSQ09U1t95FkNQgah7kzUJZC2/VuwCSGkS1Qb6N\nMrttzEI5+ObNq3cJJDWKSvvkJwOjiQBf6xuPSJIyqiTITwQ+B/w7xZa8gV6SGlC5QX4iMB/4I3HT\nkL2S1x1pI0kNqJwg/xUihcGhQAfwJHH7vz1S7zkAmJRX4SRJ1SnnxOvtxF2h9gReAyYQF0StT1z9\nuh9x45Bf9DcTs1BKUmn1ykLZRiQo+yRwPXHi9SwiMdktROv+DuC4AeZjFsoaMAul1DpqlYWyG3iD\nyCl/ErAGcBkxIHtN4raAt1daCEnS4Ch3nPz3iTtB3Qv8NHltPPBinoWSJOWjkouhfkjx0GEYBnhJ\naliVjJO/HzicuBhqeb7FkSTlqZIg/zywL9FHL0lqYLW+UrV7+vQ7arzIoaez83L2229HZsw4qN5F\nkVSlWt7jtZRhlNVtYxbKwTZx4o68+KIHWpIqD/JbEIH9oeR/5myUZqGsjXnzLqh3ESQ1gEqC/Bjg\nWqJv/lbgZKI1X7j/67LSH5Uk1VK5QX4K8BhwGJHWYLPk8XLgQqAr19JJkqpSzuia44HTgO2I1vzE\n5LUpwP7AOcCOwLicyyhJqlDWIH8C8C4iR839wK+JdAZzgLHANOIq2E2AV/MvpiSpElm7a8YBXwIW\nE634pcB3gbWBLyfvmUWGk69moZSk0uqVhXIWMZLmu8nzEcCqwM3AkcDdGedjFsoaMROl1BqqHSef\ntbvmUqJbZqfkeVfy2QnABypduCRpcGXtrrkT2Iq4Ych7gdnAmcAxwBWDUzRJUrWyBvku4FxgS+AI\nYAPgR8A1g1QuSVIOyhkn/yYxsuaQ5Lmd65LU4Cq54tXgLklNIq8slFlz15iFskY6Oy+nvX3bzO8f\nP360WSulBlTPLJSrEnlqlhHj5jMyC2UtTJy4I5MnZw/aJjSTWlOlQf6dwHnA34CtgWOBvwAvDfRB\ns1BKUu1UcmeoCcAFxE29v0hcKLUPsCswMr+iSZKqVW6QX4/oG7qNSDcM8BNi1M1ueM9XSWoo5QT5\nTwAdwMeAfwe2SU27HNgI+GheBZMkVa+cIP9H4HVgNHAPcDQwKTX9YeCZ/IomSapWlhOvU4H5yd9t\nxGiaPwC7AJcApwL7Ehkp5ww0M7NQSlJptc5CeSxwOnFDkFOA9wAHAjcSJ1nfSwT+dwAnZVieWSgb\nlFkrpcY02OPkzwZWBz4IzASuIrp4niDuCDUPuAlYUmkBJEmDZ6Ag/zoxVHIpEdRfJe4ItYxowa+N\nAV6SGlaWE6+LiLHwrwOTgQ8RQyafAu4btJJJkqqWdXTNfOKuUJ8C9iMyUuaV90aSNEjKDdTbEi36\nhytcngnKGlQhoZmJyqTGUusEZX+udEEFa67p3QIb0yNMnnyoicqkFlNNFsq0rKmG+ec/DSKNaNy4\n0fUugqRBUGmQfzcxbv4IYDHwT2A4MeqmX2ahlKTaqSQLJURAXx14H3AGMZRywAAvSaqtclvy7wGe\nJ+788SIxhHIecCVwIfAAkWNektQAymnJfx34JrA5cXOQs4gc8tsCbwFvAJcRNxGRJDWArC35bwFb\nAgcArwGbAusA6wNrAdOJ7poXgIfyL6YkqRJZg/wqwAwiwO8M/JAYUdMFnE8E+OHAnQPNyCyUklRa\nrbNQFvyUuADqe8BmwMvEkMn/JXLInwj8NcN8zELZ4MxGKTWWai+GytonfxmwMrADcdL1OaIP/k/A\nV8kW4CVJNZY1yN8JdAJ7A18hRtn8krgC9h+DUzRJUrWy9sl3AecCWwGHEzf0Pge4bpDKJUnKQTnj\n5N8kxsV/jowpDCRJ9VVJWoOqAvx1182u5uMaZF1dc+tdBEk5yitBWWZmoWxsTz55eb2LIClHeQX5\nYcDyLG80C2VjW3nlTD+jpCZRTZDfFdgdOI4I8JnSDZuFsrHNm1fvEkjKUyVBfhgwCjiZyFPzBnAC\nnoyVpIZTSZBfg8gh/9/ALsA0YojlSTmWS5KUg3Lzye8FXAKsC/ydSDd8PPBe4iIpSVIDKTfIDyOy\nTx5BpDl4G5Hq4OPAHsAXcy2dJKkqWbtr9gfmEAnJ3glsB0wCniWyUz4OHAJ8YaAZmYVSkkqrVxbK\nrwNjiKA+CziGuPr1eSLVcBuwJ3Ezkf6YhbLBmYVSaizVZqHM2pI/nbhRyNeB7YmcNaOIW/2dQtzj\ndaAAL0mqsaxBvptIMXwQ0ZI/kjj52gHcPCglkyRVrdwTrxD97hcSCcu2z7c4kqQ8VTJO/i3gauD/\niNsBSpIaVMWd+RXqnj79jhovUuXo7Lyc9vZtS04fP340M2YcVMMSSUNbrU685sYslI3uESZPLj26\nZt48E8xJzaTmQd4slI1t3LjR9S6CpBzlEeQzZZ8sMAulJNVOJaNrIBKT7Z087qb2ffuSpAwqacl/\nAVgfWBN4mRgr3w0MB5blVjJJUtXKDfJnAhOBrwFbEFkpXwP+RDHAr0WkIpYk1Vk53TWfBw4F/gN4\nmrhZyD3AAcB6yXt+AOycZwElSZUrpyV/BbAxcDTwAnAYcBQwlsgp/w7gfuD6/mZiFkpJKq1eWSgL\n1gL+h7gb1JbAIiLwfwF4lUhW1h+zUDY5s1RKtVXtxVDljq5ZDBwL/AbYLXntSSK4DxTgJUk1VskQ\nymeBU4H9iP55iFa8JKnBVHox1GPEjbtfz7EskqScVXPF659zK4UkaVCYhVJlGShLZX/MYCmVr55Z\nKNcGTiMujMp88ZNZKJtd/1kq+2MGS6n2qgnyewCfAFYCDga6snzILJTNzSyVUnOpJMivBnQClwGb\nATsBlxJXvg7ILJSSVDvlDqGcBlwM7ErkqvktcdXrC8nrkqQGUk6Q34ZIZTCFyGPzMeCTRJfNUcS9\nX8/Pu4CSpMplDfJjgbcTwybnAKOBR4GXgN2BduCLROt+bO6llCRVJEuf/GQi6+SviZOty4A9iTTD\n/03kk38mef3wQSmlJKkiAwX5Y4HTgWuJVAb/JFrzI4kW/FLgrHIWaBZKSSqt1lkoxxCt9Q8RKYTX\nSV5/kbgT1F7ADGB2xuWZhXIIM4OlVL7BvhhqKfAd4E2iO+Z44Ejg/cQdog4ne4CXJNVYlj75RcSo\nmVOA6cDJyevTiP54SVKDyjq6Zj6RwuCTwIHJa7cNSokkSbkp54rXR4lW/L8GqSySpJyZhVI1U00G\ny0qZ+VLNrp5ZKAsLLmu4jFkoh7LKM1hWysyXGuqqCfIbA9sDV5bzIbNQDl1msJRqr5ogvwHwWeBG\nyuinNwulJNVOJTfy3pDIIX8X8ACeiJWkhlVukP8UcBNwHnAIMaTSTnZJalDlBPmRwHLgauAx4GEi\nI+XmwIT8iyZJqlbWID+ZYoCfS3TXzCcSmK1PtObXHYwCSpIql+XEa+9MlAuAPxHdNWcnr/8n8GQy\nrV9moZSk0mqdhRL6zkTZRbTsFxIJzDYEnsgwL7NQqqbMfKlmV+3FUFm6awqZKG+kmIlyEXEbwKOB\nrckW4CVJNZZ1nHypTJTtwH35F0uSlIdyRtf0lYmyI+8CSZLyU+4Vr2ailKQmkkcWynKSlJmFUjVV\nyHxpNko1q3pmoRxLtOhHErcHHEaMuOmXWShVW5H50myUGqoqDfKbE902jxGjbD4LvJzlg2ahVC2Z\n+VJDXSVB/gPEMMoLgFuAo4DvEmPpn2WA7huzUEpS7ZSboOwdwI+BPwDXAK8SLfqngG8l7/FqJ0lq\nEOUE+f2Bi4ibhOwO7JiadiqRpGzn/IomSapWOUH+D8A4oBO4H/g+0Tdf8HfgufyKJkmqVpYgP5UI\n7s8AvyP68X9HjJk/C1id6KpZM3mPJKlBDHTitZCB8hwipUEH8BkiMdmtwN5EsL+SGGEzILNQSlJp\ntc5CuRLRSv8g0UVzFfBF4H+ATYix8q8RffVZmIVSdWE2SjWrwb4Y6nWi730pMR7+VWAtIhvlHcCq\nxH1eJUkNKMs4+UXALOBE4g5RHwKGE1e5SpIaWNbRNfOJC54+BexHBPg88t5IkgZROVe8Pkpc1fp6\n8tzOdUlqcLVujZuFUnVRyEYpNYtC5tR6ZqGsiFkoVR+RjVJqFnllTs0jyGdKMVxgFkrVg9koNVRV\nGuS3IAL7Q8n/zDcOMQulJNVOJUF+DHAt8Dxx1evJRGt+GTG0cllupZMkVaXcID+FuFHIYUTWyc2S\nx8uBC4GuXEsnSapKOVkojwdOA7YjWvMTk9emEGmIzyHSD4/LuYySpAplDfInAO8CDiVy2PyayDo5\nh8hfMw24l8hn82r+xZQkVSJrd8044EvAYqIVv5S4AnZt4MvJe2aR4eSrWSglqbRHH+3gscc6eOml\n+5k5s/pbdGQdYD+LGEnz3eT5CCI52c3AkcDdGedjFkpJyqCQObXai6GydtdcSnTL7JQ870o+O4G4\nsbckqQFl7a65E9gK2BN4LzAbOBM4BrhicIomSapW1iDfBZwLbAkcAWwA/Ai4ZpDKJUnKQTnj5N8k\nRtYckjy3c12SGlwlV7wa3CWpSZRzMZQkqcnUPNVwXukzJamVjR+fT+bUmt80pLvb3h5JyqpW4+Q1\ngI6OjnoXYVBZv+Zm/YYug3xOWn0ls37NzfoNXQZ5SWphBnlJamG1PvE6B9i6xsuUpGY2F9im3oWQ\nJEmSJElSU9kdeAT4O3BcnctSqVnAAuAvqdfWBG4lbm5+C7B6atrXifo+AuxWozJWahJwO/A34K/E\njWCgdeo3BriHOCf0EHGvYmid+hUMBx4Abkiet1L9ngIeJOp3b/Jaq9RvdeAq4GFi/dyBJqvbcOBx\nYCNgJLGhTa1ngSr0fuI+t+kgfyZwbPL4OOD05PHmRD1HEvV+nMYeybQexRM7qwCPEr9Rq9QP4qY3\nEKk87gbeR2vVD+Bo4DLg+uR5K9XvSSLwpbVK/X5GMbvvCGA1mqxuOxK3CSz4WvLXjDaiZ5B/BFg3\nebxe8hxiT5s+YrmZuNlKs7gO+CCtWb+xwJ+Ad9Ja9ZsI/BbYlWJLvpXq9ySwVq/XWqF+qwH/6OP1\n3OpWiz3ABsAzqefzk9dawbpEFw7J/8KPMoGoZ0Ez1Xkj4ojlHlqrfsOIFtACil1TrVS/s4CvAstT\nr7VS/bqJndh9wH8mr7VC/TYGFgIXAX8GfgKsTI51q0WQHyoZybrpv67N8D2sAlwNzABe6TWt2eu3\nnOiSmkjcl3jXXtObuX4fAV4k+qtLXfvSzPUD2JlofEwH/ovoPk1r1vqNALYFfpz8f40Vezqqqlst\ngvyzxIm9gkn03BM1swXEoRTA+sSGBivWeWLyWiMbSQT4S4nuGmit+hV0AjcC29E69dsJ2Jvo0vgF\nMI34HVulfgDPJ/8XAtcC76E16jc/+ftT8vwqIti/QBPVbQTwBNENMIrmPfEKK/bJn0mxf+xrrHhy\nZBRxOPa4hJ6VAAACCUlEQVQEtb+6uBxtwCXEIX9aq9RvbYqjE1YibkT/b7RO/dJ2odgn3yr1GwuM\nSx6vDNxFjCpplfrNBqYkj2cS9Wq6uk0nRmw8Tpw4aEa/AJ4j7nX7DPBZ4mz/b+l7mNPxRH0fAT5c\n05KW731Ed8Yc4pD/AWLYa6vUb0uiv3MOMQzvq8nrrVK/tF0ojq5plfptTPx2c4ghvoUY0ir125po\nyc8FriFOxrZK3SRJkiRJkiRJkiRJkiRJkiTlYz3gCmIs8X3EFa6b5Dj/XYjEe1LDq3uKSilnbcRl\n77cB7wC2Jy6eWbe/D5VpVyKVgCSpxqYBd5SY9h0iLcWDwH7Ja+0U0wAA/Ag4KHn8FHGZ+f3JZzYl\nUls8T+QbeYC4WlhqWCPqXQApZ1sQQbm3jxGXj28FrENcRj67j/elM/51EwmxtgMOA44h0tyeR2Tp\n/H6eBZcGg901ajWl0q7uDFyeTH+RaO2/u5/3F1yT/P8z0YovaIikUNJADPJqNX8jWt596R2Yu4Eu\nem4HK/V6zxvJ/2V45KsmZJBXq7kNGE3x7kEQXTQvAfsT6/w6xI1D7gWeJtK3jiIy/U3LsIxXKKa+\nlRqaLRO1on2BHxD5uJcSN9M4irjz1VyiBf9Vijdi+BWRwvZJolumL+m++huImzt8FDiCyG8uSZIk\nSZIkSZIkSZIkSZIkSZIkSZIq9f8AvDI68D7Lu7sAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7fe14810a2d0>"
]
}
],
"prompt_number": 48
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t_sql = '''\n",
"Select distinct(metro, state) from nb_ask_final order by (metro,state)\n",
"'''\n",
"curs.execute(t_sql)\n",
"print curs.fetchall()"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t_sql = '''\n",
"Select metro,state,count(*) from nb_ask_final group by metro,state order by count(*) desc\n",
"'''\n",
"curs.execute(t_sql)\n",
"#print curs.fetchall()\n",
"t_metros = []\n",
"t_states = []\n",
"t_counts = []\n",
"for elem in curs.fetchall():\n",
" t_metros.append(elem[0])\n",
" t_states.append(elem[1])\n",
" t_counts.append(elem[2])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 42
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print 'How many metro areas are represented ? ',len(t_states)\n",
"\n",
"##plot a few at a time\n",
"p0 = t_metros[0:14]\n",
"p1 = t_states[0:14]\n",
"p2 = t_counts[0:14]\n",
"\n",
"\n",
"y_pos = np.arange(len(p1))\n",
"\n",
"plt.barh( y_pos, p2, align='center', alpha=0.4, height=1.1)\n",
"plt.yticks(y_pos, t_metros, rotation=6, size='small')\n",
"plt.xlabel('Count')\n",
"plt.title('Bernt Neighborhoods Count (highest), by Metro Area')\n",
"\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"How many metro areas are represented ? 118\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAEZCAYAAAD49A5jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXeYG9X5hd/ddcMFG4MLLpjeO6Y3AyHGoRNqQieQQogD\nCT35YVpowYFAEkoCgQRTQgsmkEAAY6oBY0y3ATfc+2Js47Kr3x/nTmak1WqLd1da6bzPo0ej0Wh0\nr1Y7R9937z0fGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGNMybIE2LCex1YDG9fy3OnA\nK03QnohRwFlNeL7aOJ2mbXchMgz4W74bYQqX8nw3wBQdU4BlSGAWAk8D/Zr5/Q7M8fwgJGB/yNj/\nKnBaPd+jS3ifQiMVboXMYGA08BUwFwn84S3wvlPI/b3IpCk/xynACmDdjP3j0Hdxg3qcYxDwZRO2\nKcmw0I7dmun8RYnF0jQ1KeAwJDDrA3OA2xp5rjb1fL+yOo5ZCpwMDMh4XaELTS7q89nkm2OBR4C/\nAn2BnsD/0TJiWZ/vRZKGHFuf954EnJTYtx2wFk37natoxGvKgFOBD8J9U5+/aLFYmuZkBfAYsHVi\nX3vgt8BUYDbwJ6BDeG4QMB24CJgF3ANcgS6496Ho5ENgl3D839Cv9JEokv1lLe1YjC7YV+Ro65nA\nxyga/jfpv/6TqdV1w/tVAm8B11AzRXkwMBFYBNye8VwZ+vGwGPiE9OinD/AUsAD4DPhB4rlhwKOo\nz5XEUfGGKEr+CvgP6dHMEcBHoR0vAVsmntsKRXmL0GeaFLB1QzsqgTHAJhnt/x36EVQJvA9sQ03K\ngOHAVejvuCTsHw2ckzjmVygSm4P+xmuH5wZRM7KaQvx5DWPNvxdJUuh7+FA431hg+/DcheizT/J7\n4JYc5/s76WJ0GnA/6aJc2/9CJ+BZ9H1YEtqzPtm/A7m+M9nYF33GQ4ETgbaJ504HXkN/t/no/6Vd\nLW0E6IYyR3PR/81I9KPIGFMPJgMHhe2O6GL218TzvwOeRP9ondE/+m/Cc4OAVcB16J+4A7pALAcO\nQRea3wBvZLxfXWnYL4Fe6AKzedj/CvHF7Eh0odkC/YC8HF00IpJi+RAwIrRtK2AaEoDksU+hC1J/\ndCEZHJ47PfRvKPrVfjwSzW7h+dFIXNsBO4TXHhCeGwasRAJIeP9RwOfApuHxS+izI/Tza/S3qEAX\n/M9QRNo2vO6S8PgAdEGOPpuHwm0tJITTE30cDLxDLGpbAL2pyZbhsxiQ5bmIM0ObNkQC8RgSFMgu\nlsm/9TDW7HuRyTD0+R6DPq9foOiwAgnV10DXcGwbJO471XKu6H/gU/Q5VIS+bEB6GjbX/8L+1Ox/\n1MbkdyDXdyYbfwHuDttfhv5GnI6+n+ei/4MOdbSxO3B0OK4z+vHyRI73NsYkmIJ+DS9C/9jTgW3D\nc2XoopOcALMnuiiBLpAr0D9+xDDgucTjrdGYaER9xRLgBiQCkC6Wz6ILd0Q5St32D48jsawIfdos\ncezVpEeW1cBeiccPAxeH7dOBGRntG4NSxP2B1Ug0In4D3Bu2hyFxTPIScFni8Y9DXwB+TdxX0Gc/\nHV2E90WRe5IRKJKI+rh54rlrift4IDAB2J3cmam90WfRLscxLwA/SjzePLx3OfUTyzX5XmQyDHg9\n8bgMmIn6Afpco6jtMBTJ1kYklpejv+EhKOqvIBbL+vwvZBPLUYnHdX1nMumIfjB+Ozy+BQlhxOko\ngoyoq42Z7IgizKKkNYx7mNZFCkVqL6J/tqOAl1EUBvqHHZs4voz0i+48dMFMMiexvQz9ki1HF56G\ncCOKqLbP2D8AuBW4OWN/X9IvWD3Q/0xy3/Qs7zM7o73Ji1mmWE5Fkcv66EKzNPHcNGBgA95rOfqF\nD0rPTUs8lwrt7osusJkX4qnhNetRs4/J87yIIpk/oM/tcZTmXEI6C8L9+qRfgJNkPjctvHevWo7P\npKm+FxHJzzcVHvcJj+9Dwv5n9OOmrpmzqXDMK8BG1EzB9qDu/4W62tiHur8zSY5GkeML4fE/0N9z\nXeK/V+b3PVcbO6LIczCwTtjXORzTmucDZMVjlqY5SaG0TBWwDxoHWY6igHXCrRtxSi96TeY56nqP\n+rIA/Zq+JmP/NDSOtk7i1gl4M+O4eUho+if29adhZI7pDEARzEyU1uqceG4Dal7A68sM0lOgZait\n08N79Sf94j0gvCbqY3LMNnP25m3ogrw1igYvzPL+E9CF99gcbZxJ+pKcDcJ7z0EC0DHxXAW6eNeX\nxlysk3/LcjSLe2Z4/E/0I2tb4FDggXqcbxqKwoagHxVJ6vpfyNb+zElp9fnOJDkNTbybjjILj6GU\n/Pcz3qO+bfwF+vvvhlLU+6PvVFNOlioYLJamOShL3B+J/sk+Qb/470aCFV34+hKnhXKdqzbmkD4B\npS6Go1TSVol9d6B0ZjQRqStwXJbXVqGL3jA0nrclcAq5L8yZF4+ewM/QReq4cI5n0AXsdTTm2B5d\nmM9EE0VyUdvn8w90UT8wvNcvgG/Ce7yFIrGLwnODUGrxIfQ3SvZxa3SRjfo4EKVg24ZzfIM+l0xS\nwAUoHXw6usCWox9Nd4ZjHgTOR4LZGaUQozZMRJHid8J7/Sp8LvUl2/diCrlngO6Coq82wM9R36If\nTMuRuIxAqfPaBCmTs9DfYHnG/rr+F+agiC/5QzLzb/0l9f/O9A3tOBSNbUa3G6j9M6mrjZ1DvyqR\naOeaQNfqsVia5iCahViJxvRORWIJGr/7HF2EKoHnSR8fyxZZ5oo2r0MX0kXo4pyN5PFLUDp2ncS+\nJ4nHMyvRtPrBieeTr/8pEtPZKDX3IOlp41ztT6F+b4YiuKuB74a2g5YabIgihsfRMosXs5yntr4l\nj5mA0oW3hfc6FM14XR3aeziKeOahtOopSKCiPnYOfbwn3CLWBu5C6b8pKPq4KUu7QOJyArqAzwjn\nu4p4nOwelKocjSKwZcB54blK4Cco7TkdjZ0lU4QN/V60Qxf0zGxB8rVPhvYuRNHWMaT/ELgPRZYN\nMS+YBLxbSxtz/S98ir5bk0J71id7n3N9Z5KcgtZ5/hdNAppLvKxrO/SjKNv5c7XxFvSDaj4S7Wez\nvN4YYwCJbG0TKkzhsDf1S53moj9KD3eu60BjjCl1tkDprjI0VjOPeCq/KV7KUST153w3xBhjWgMD\n0drApShFdnHuw00R0AmlgT/Ai+6NMcYYY4wxxhjTKIpyPUyxs8MOO6TGjx+f72YYY0xrYzxyGmow\nXjrSChk/fjypVKpob1dccUXe2+D+uX+l1rdS6B9aW9ooLJbGGGNMHVgsjTHGmDqwWJqCY9CgQflu\nQrPi/rVeirlvUPz9WxM8wad1kgr5d2OMMfWkrKwMGql7LtHVSrn88rvy3YSioGfP9gwdelq+m2GM\nKXAsloVNe2QAnVkrkAEDzmn51hQhU6f6R4cxpm48ZplfovJNFaSnBqLtH5Bea84YY0wesFg2H5EI\nJh9nft5RSZwqapZaAtWKq6ZhdfyMMcY0MU7DNpy+SPRmEQsdSAwzBa8q43HmrJzNUFHVHVGtvudR\nwdl7UI26RajQbDtgRRP2wRhjTANwZCnWAbZCFcC7oUrwA4kjw2SK9AzgW6iIbqYYEl7fERVU/QGw\ncdg/EBVz/QBVngcYDvwMRY7noqKqQ4DJqKr5K6Fta615F40xxjQWR5bQFlVqX4wqgY9B1cQ/IRbJ\nFBKs5ajiey8khBsA96NK4sOBLYE+qGL4ShQxbgDcDBwLjEJjkPejSugTgGnA74FNw7EDUEQJ8B6w\nF9AFVTY3xhiTBxxZKjp8GTgZOAxFmANRGrQsbD8BjAWORkK2LRLFPqjwb0ckoP9EArk5ErojkdAO\nRmI3G41BfglsggQzqro+C1gPCWi/sK87sDWOLI0xJq84spR4LQMOBxagiLItErqFSOieRUIJcAAw\nD7gdWBtFihsCbxNHoq+hgrGgiLVDeI+tkaB+jT77RcB+4biFYftMJNjvAV8A71NzrJORI4f9b3vz\nzQexxRaDGtV5Y4wpVkaNGsWoUaOa5FwWS7EKjR0uRqnSsSg63AxYisYQI5YgUY2ivRUoOpwVXgNK\n1w4I2+VoEs8jwG+RCL4LXIvGRj8Jxz0NjAvbdwJ3o8k+WTn88GEN7KIxxpQWgwYNSrPwu/LKKxt9\nLoul+ByNG94O/AQ4B3gcCeFSYB80U7UTErB1UIp0NtA1bC9BqViASWgCEOF1FSj1+lMUyS4Iz40J\ntzI0djkt7F/Z9F00xhjTWDxmKeYT1zl7EaVBT0Gp06eB/igiHI6E7D3gK5RG/RsSvOeB88M5/oMi\nQ1AaNYoY5xELZRIbvRpjTAHjyFLMRilYgCnAz1H0OAmJ4rkotRoxsZZtY4wxRYjFUrwdbqA067MZ\nzy/HGGNMyeISXa2T1JAhL+e7DUVBZeUIjj9+T1ceMaYEcImu1ksHYCNgKpp52x14Cf1dVud4HVqi\nadaUfv32ZO5cOwkaY3JjsWw+oslTZaT7x0I8oWd94CrgAmRaMD/sj4SyHbXMjD3qKJfoaipcpssY\nUxcWy8YRCWF1uK9AAlidOKaammTOep2LJhC1RUK6HVqveS8yOvgGecVmO5cxxpgWwktHRAXyX61A\nBubRvgqyf0bV4RZFilXUFLTtgYOAocjzFWAbZHrwJlpzuTScoxNKwx6JrO7WA76D3IMslMYYk2dK\nQSy7hPuovmSyz1GNyUOBi5HoRVVCqqgpgmshMdsPOIY4UrwHra18Dugd9r2ILPR6A9eF9/4VcDmw\nB3Aq8pZdFtq4CEWZS4BngFuBP6CSYMYYY/JIsYvlBsBDYTuqL5kUvyh1uhyNE7ZBS0gqkBXdXagi\nycnh+J8BtwHHo7WYg8L+4cg79kEkgiADgj8Bl4Z2rItEsTI8Pw4J4RLkMRu1YW0kkj8A5qDosm3j\nPwJjjDFrSrGPWS5B0doOyLpuV2JXnhXI3m5LYDoyJViNHHm+i0px/Qn5wj6Aakt+icwKLkHVRnYC\n3gC2AK5AqdT3w3t/hsRwQjh3LySgmwEfIr9YkIF63/A+HVE1kpNQSrYc+CXyrjXGGJMnil0sV6Do\nbASKEKejAs+foYLLXwMnoOhtXxTBjUPp0ZdRRZEtULHn9ZHwzgivXYLEdSCamHMDStOehPxiK4Hv\noYjyKzQ++VskfjcAI5Gheg8043U2Sud+CXyEotqFtXXMVUeMMSY3rjpSf1ahqG4FKpv1d1QhpH+4\nTUZere8iweuGZqh2AU5Eongmiia3RBVCdgn7v0HrIgmPb0VR5Goklq+hMctNUGQ6GaV9h4b2RIv7\nnkm09736dsxVR4wxJjeuOlJ/qlB01o547eIsJIozURq1O4ruBhCPKW4GfACcBVyPJvV0QpNwFqMx\nzcnIQOB9VHfyPhR1fo1EsQx5y16f0aavsrSznHh2rU3VjTGmwCh2saxG4tQerVsEpU93QrNfe6Fq\nIZ+jFG0HNIu1F/BfJHyr0QSe+eF8SeP02YlzRtvlSPDeRREm1O3IE006slAaY0wBUuxiCUqrfkTs\njjMKpVOrgPuBh8ke7YHWQ2aSjP6ybUfCF9WqhDqt64wxxhQypSCWzxCPC5ah9Onk8Dg5dpi0oqtA\nYpppT1ffbWOMMUVEqVQdybSnK6d1O+O46kgTUlk5gkGDdv7f454927sKiTFFiKuO1E2mMOZbKLug\ncc6yxC3TW7YOXHWkqejXb08GDIjF0cbqxphMSkUsW5rkWGY56R6y2wJ3APuEfUmBTEa87dGEo0qy\n4KojxhjTclgsG0dUZaQMiVvmeGXycWa0OItYPMuRx+wmaEnKHcDOyDnoKzRT98ambLgxxpiGY7GM\nqW2N425oBm0fJGgQ16fMpD1at9kRGSJMAw5GTj5dgfNRoed2xCW5dgXGhu29w/G/BR6tpT3GGGNa\nmGIXy2hsMCKqMgI1Ba82Ydob+DPwI2KDgSORIO6DbPQeQUYHTyDjgrVQVHgXqkd5J/KFvRo4Hbn/\ndELuQPORzd7A0L4RwHEo4nwD+Cu1L20xxhjTAhSzWG6A0pmHJvZFlUeSlCOHnr4o6psZ9keR5kGo\n6sidyKxgDnAzcux5BpmqPw+cE455EPg1iiy3D7eoVubeSEgXI8/YpcRG7tcgX9ipaB1odTjvu8Cr\na/RJGGOMWSOKWSyXhFs34vRpZ+AyVIXkIVRhZCgyUl+ESmPNJh6HbIdM16OU6kDgX8AU5PTzGiri\n3A3VrYy8XSeitG0FihxfAZ5Cn/dSVI5rw7Bvt/BeBwCvI6u9M4AdUY3MrNNebaRujDG5sZF6/ViG\nqnn0IBbLc8L+S9C44BhkfXcjEqqVSCijWal7IGH9JxLO7mj88mOgZzjnLFSRZCyanPMeiha7Ineg\nkag25kEo/XoR8p3tj4zd1w5tmIUEeVZoVzJ9XAMbqRtjTG5spF4/ViFv114oOgRNpnkYidVbqILI\nr4GjgFNQpDgSpVoB9kLjkXeEx9egCTiVwDZojHI5EtWbw7keQII3M7ThSZRmXYEi0q/Q2CXo8/9P\nuGXDxurGGFMAFLNYVqPUatfEvqnAxmF7FbARGmO8HxVkHoJENBLLbigSjfgACdgolGIFuI7YMu96\nJIQnozqY88L+bHY7ZcgzNpp0lErcIiyUxhhTABSzWIKiuL1QZLcOGv/bAY07LgMuBQ4EfoOE9TFU\ncitiOOli+XDG+SvCuSOOAP4PRbJ3hn1Ja6VsQpht0pExxpgCotjFchHwfZSKnYbWLr6MxhQ/Cvs+\nR2nUbMzNsi8az4zM1pM8Fm5JHB0aY0wrp9jF8q5wy2RyxuNc6y8ziRx5HA0aY0yJUApVRyoS29GS\nkOQYYWvEVUeakWQVElcgMaZ4cNWR3GSLAPNddaQJcNWR5iJZhcQVSIwxUBpi2RqJynZBLcLuqiPG\nGNNylNd9iGlCeqK0cH/kBlSBRDG6j4hqWxZBBGyMMa0fi2XTsA6wFXLp2TOxvwJ9xtHn/A9gU2SG\ncARaAxotHUmOn/YA9gPORp61xhhj8ojTsGtOW7QcpRKt0eyIBO5Rao6XTkPCOhs5/1QBJwInIcu8\n3yDHn0uBAchQvVOz98AYY0xOLJZrThUSy7uQw8+WwM+Q+UEnYBCyy7sLrdvsi2bntEXC+QqqKrIu\nKsu1EFUf+Qh4FomwMcaYPGKxXHOqken5lkgsP0WuPj2AK4FbUTr1QBQp9keWeilUumseqoSyHTJr\nfx24GzgWuCCc625UreR/uOqIMcbkxlVHCo+FSBwj5gKbAIejFGsfJKIz0FjkUlThZD1kyD4HuBxV\nJNkO+C8S1C7h+RrLX1x1xBhjctOUVUc8wadpmE+6YXsbZLG3I3AkqkSyDYoSN0TG6x1Q6nU+8D1U\nMqwXmhS0G/A7ZMb+FCrtZYwxJk84smwaFqCKJZuiQtI9gd8jI/a26HMuQxN75iDxG43EcwoqDzYH\nRaSrwjkHt1jrjTHG5MRi2TTMRxN6foXGIB8G3gHOQOOZXxKPOf483L+UeP27LdNMY4wxjcFi2TS8\ngSb4ZPJ2SzfEGGNM0+MxS2OMMaYOHFm2Up58cnS+m1ASrF49Pt9NMMYUABbLVourjrQMq+o+xBhT\n9FgsC4eOwLKwXY5mz0b1N2vgqiMtw9Sp+W6BMaYQ8Jhly7EtcuiJqowAnIvWUg4EbgLWDvurqWmu\nbowxJk9YLNeMdUk3Or8QOAGJIkgYo894BFp/GVUZAbgfmIBM1Zchxx6QkcF1wLfROk1jjDF5xGLZ\neMqAz5FN3Vph39nI4i6KHFOJ7Y+A7wBnIsN0gKOBw5D1XRVKxe4D7IHWaQ4hveSXMcaYPGCxbDxl\nwEPI67UPsDuqIPIxcADwRzQL56fh+KkoYuwKnAzsi6LGjZBYrgyPDw3nmwN8CxmwG2OMySOe4NN4\nUkgMB6J07NbI83UKcBYSzp+gqiPHAjOB9sjzdTly/JkHdEdjlF+j8l0zUES5HjJWz7p2wVVHjDEm\nN646UhikUDQ4HuiHIsvpaLxyEfJ5BY1JborKd+0U9n2J6lyOQWbrVUhAu6PamBuhyHV7oDPwj/D4\nfxN+XHXEGGNy46ojhcNyYCIyRt8EeB6JZTma/QpaqFeN/GP3B45AY5UTUGHn3uH4+Wiy0AfAP4Gd\nUSp2YjiPZ8YaY0yecGS5ZixE6dTh4fHnaAxzKpr5+i4wCTgVpWqfQeOR7wCPotTrL8J5Hkycd3S4\nGWOMKQAslmvGLGB1uD2DPs+RqNLIMhQxLgjHLiOe7JNkYfM30xhjzJpgsVwz3iauLFKGRNM+dMYY\nU2R4zLLp8JiiMcYUKWX5boBpFKkhQ17OdxtKgsrKERx//J4MHXpavptijFlDysrKoJG65zRsfikH\n+gPTwuNU2Fdd90ud7W0J+vXbk7lzV+S7GcaYPGOxbD6iyiEpYvFLWysZ9l9I+sSf2o5Nw1VHWo6p\nU+/KdxOMMXnGY5aNozzcKohFMZOockgySozEryty8+mA3HquAw4J++9FS0uGI5MCY4wxecZiGZMU\nvIpwqy23XU26GKYSr4teswcqwXU+Mlrvh/xinwTeBI4HNkNLS7oT+8iORRZ6XYCD17xbxhhj1pRi\nT8N2QX6rGyKLuYlI4MqIy2RFJFOemc+BBG0lMhLYCdgY2BVYivxco0oiQ4HZqJrILKAbMBj4DI1P\nXg+8H+6fAV4L91OQeD4dzvMa0APVuPyqQb02xhjTpBS7WN6EIrpvgEdQmaxs9EB2dcuRxdzeqOLH\neGQm8B1klP4UcA2qBLIHqjoyBFnWHQHcjmzu9kYp1beQsPYH7kNrMsuRaUElMAD5yG6KrPKmomLQ\nIHFuj4XSGGPyTjGL5c4osvsligZBxZQPRUbld6CIbjPgCmRP9yiK6E5CNnUPos/oIRRV3oOE8xNg\nHeAxJIp9UTr2MyRyy4CtkLH6v8Lxy1Ek2i20ZRmKeN8Bfoii0WeBg4APw7muq61zrjpijDG5cdWR\n+jEX+bCeg9Kv41CZrCdR3cg9kSAdg8Ts5PC6tZHH65so+usPXItEtT+KDscRp20XItEDifNWSFxH\nhud6I4P0l5Gg9gjHfh7uX0S+sauRifqHwJ3IWL1WXHXEGGNy05RVR4pZLKcDv0eTbI4BXkfCtB6K\nLnsB76E1jpslXlcd9nUJj/dDYncQWuaxE0qZbhSeX0wsltNRevYTVG3kNCSYE5D43YFqXoIENeJv\nGW3/GmOMMQVDMYslaIzyJ2H7JOBmYARKb34fpV4/AE4ANg+P5yPBjMRwHBK9Z4DJaNbqbOBx9PmN\nIS6j9Wq4gSLHXzdPt4wxxrQkxSyWZWjGahuUju0L/AfNTK1AY46bAHejyT93owk5I1Dk2D6c5xMU\nia7KOP/j4X41Go80xhhTpBSzWKbQrNSz0NKOD1Gkdxia8foZmokKEsgROc6TKZTGGGNKiGIWS4D7\nwy3Jw/loiDHGmNaLq460Tlx1pAWprBzBoEE71/v4nj3bu0qJMQWIq460Xrogg4Lu4T5yDnLVkQKi\nX789GTCg/uJn43Vjig+LZcuwFnAesB3QDi0h+RT4MXAlcCyaYJStykjWkl2uOmKMMS2HxbJxlBGH\n8pGQVZBejovE/uPQspS/EEeSs5BzUHdkiNAR+dcOQLZ5VcCZaKbt35upH8YYY+qBxbImmUJYRhzd\nRZFfippRYDbz9YjzkYfs7PC4Itx/jJay9AB2AL5Aonoc8ABwNHBqI/thjDGmiSiVEl2RG08FcAaK\n4pL1KJNE0WF14nEV6eK4MTJa/z7xesyrkbfra8gyLyIS0cpwn0yrLkLLWJ5C9StHAsOA76J1oXPx\nDxpjjMk7pSCWGxBby50K7I8ELltx5p6oAsiRqJZkGTIueAx4BdndgdZuHoqqj5yIIsMdgQuAfahZ\nKWQZstcDiV8kvEvDe65E4giqkDIJjWWOyXIuY4wxLUwpRC1Lwm0/lNY8A0V0pwCHoCjxMuAl4F40\nlrgAGRp8FI4bCfwDiR6oFmUvJKhDwmtHokk83yBP2ino812NoseD0SSelcA24dzzkK/se8h7ti8S\n5uHEUeoyFAGnpXlddcQYY3LjqiMN4xvkwPMIKtG1IOwfj8SoArgIjR9+jgoz/wVNstkOecIehITu\naWRqcAawGxK7dmiSTrRe4DzgqPA4EtfrUGr1fpQSXgD8FHnK9kYC2SucqxpVR3kKmbRDltmwrjpi\njDG5cdWRhrEclcD6mrg8FigFeg4qqbUpErwFKBIEFWKO/GTHhf03o/qVXVEJr3eAocCW4Tynh/MM\nR0IZTRZ6Gxm0b4GqkExGIj4s0Z4/hvt2qCRYVxStQvYlJcYYY1qIUhDLMpQmnYgivk1RvcgjUOR2\nPBKqzZGH7KbhdSuA9VER6bOB7dFY4lXAXmFfF2So/i4S0/dRma5oMk80a7YMCeTkWtqXIk61lqHo\ndTGxcBtjjMkjpSCWKVTseQxKu94YHqfQGGYXFA2ui5ZurBte9xKaNTsF+AMSwFlIwJ4Jt4a0ATSh\nKnPZSbQdjUmuQKJrjDGmQCgFsQSlVHuhos7XALsAL6BU6ly0/jEaXxyFRO2DxOsXZjlntFYyRXoE\nmStlWg8bO2OMMYVGqYjlA+G+ApXq+jA8np7l2OQ6yGg7mwhmMyHw2KIxxhQhpVR1JCl40fhgtrRo\na8BVRwqYqEqJq48YU1i46kj9SApiA6p7FCquOlKoRFVKXH3EmOKhlMSyUOmAfumsQOKdHAutVcxd\ndcQYY1qOUrC7yyeRCXtE5EWbTAPsi9ZoRsJYRU0bPmOMMXnEkWXjGIA+u0nIe3YZcvMZjAwK7kEW\ne8nx0DKyTwraAy1X2QotRzkVec6uAC5Fy1mMMcbkEYtlw4gmCd2KKoscCRyArPLmhec6ofWZ1cgD\nth9y+pkGnAtsFm7zgJ8D66EKJquBl5Fh++NoDeghaCZvZHtnjDEmDzgN2zBSQGdkWNAJRZVbIweg\nq5E93koklEcCP0Gid1J4/TbhdYciG77DgL8i04PL0VKWjkhETwZ2R7Z3xhhj8ogjy4ZzALG5QX80\nQWcCigbeFmGxAAAcpUlEQVTboxRqX2AEMj7YFZXx2hWt7+wXzjMFRZVR+a6O6O9xIPAi8Byy5FsH\nmSqk4aojxhiTG1cdyS99gY1Qya4TUdWQyGx9Q5SqbYOiwl8hUeyCfGYnIY9ZkA/tLuG+HSoFNgGl\nY89DAtkGRbI1cNURY4zJjauO5Jdq4HAURbZFArlZeK4SVRPpB6yFhHI4Kse1JYo0twnHTkcTgr5G\nad3voLJhf0HG7J8jL9qlzdsdY4wxdWGxbBjtUCR5GIoSOyAx7ItmwL6GZrGWA6OB76Hxx7HAZ6jg\n84/CuUaFGyjl+lziff7dfF0wxhjTUCyWDSOF0qtXEZsH3I4+x27IVmcxmuQDikAz+aiZ22iMMaaJ\nsVg2jFVoJivE5gEf5685xhhjWgKLZSvlySdH57sJpg5Wrx6f7yYYY5oIi2VhEtnh1VoNpXv3/Vqo\nKaaxTJ48It9NMMY0ERbLlqMdGstMCmHkE5tpml5nybCFC13RotDp1Mn2vsYUCxbLpiczKowKSI8B\n9iF9KUi2q2m0HGUA8BbwVbY3cdWRwmdqDSsJY0xrxWKZm2TBaNDntZrcadLMfZEgLkZuPGXIIu8t\nZIl3KPKZvQwtRzkNOAit19wGOQHNW8N+GGOMWQNK2Rt2XeTTGnERWupxPTIcuB4ZnCdZHe6T1UQA\nugM9w3YfYD9kSrAhcCGKFuchs4LvAQcjk4LNgb8D9yLh3BEJ5P3AxcCxyCbPGGNMHinVyLIMOeT8\nCRmgLwfOQVU/fouMBUA2dZGReSVwJqoKshrYDXnEng4MBCYiM/ReyLRgcnifHkhMPwFuAJ4ErkXC\nvDvyl90gvMfMcPxVwKvI8WdCk/bcGGNMgyllsXwIRYB9kKH5aGQY8GMkopNQRHgCijSfQp6tHVCt\nyo7Av5BDz3LgDmAI8oldhDxd54Vj1wYWoELP94c2LECp1teQKfvS0K7eSCSfRh60y5vjAzDGGFN/\nSlUsU8htZyBKx26NZqpOBI5BZuczUZr0CVQJ5IfASOTXOgR4D/m6/h+wP4oQl6AxyjbhtgylZ9cG\nvkS1KVcANwGPhttg4Nsocv0t8AjwS1Ta6yPg4dCWNFx1xBhjcuOqI2tOConjeDSOuDsSpPZIDHsC\nb6DIc3LYdx5wCzJAH4jMz3dFKdSD0FjkkeH5WcgzdiKKXHuiKPMrNEZZhlKz/wrtWIiqjMwObftF\nXR1w1RFjjMmNq440DcuRmH0DbALch6qHzEfG6HNRRFhBLKTtUDS5LhK/T1BEOBbVqhyPxO+JcP4p\n4TYv7H8VCeXfEu14prk6aIwxpmkoZbFcCOyAIkBQVZDdwvbWaKlHOzT2OBWNSX6IxO9UVEbrazSL\ntirj3AtQyjUbdRoOGGOMKSxKWSxnoVmtq1F01waVxnoKid9XaPZrxK2J7ZcT25lCaYwxpsgoZbF8\nO9xAqdHVeJmGMcaYLJTVfYgpQFJDhrxc91Emr1RWjmDQoJ2zPtezZ3uGDj2thVtkTGlTVlYGjdS9\nUo4sWzWuOtIa+JQBA7J7+E6daiN8Y1oTFsv80QYZEMxFS1feRjNzK6hZhaQGrjpS+HTp0j7fTTDG\nNBEWy+Yl04i9MzIhmI5m2/4F+cT+Avhp2F+vCUOuOmKMMS2HxbLxVIT7SNyiUlxJMpeJfI28YauQ\nKcFqtB5zEfHf4hJgEHL6+RGatWuMMSaPlHLVkWy0I640UkE8EJxtQLiK9CgwEsr2yLQAlF7tFra3\nBs5Hdno/Qes8OyVe2xXYApm3fw/Z6F0RzmeMMSaPlEJkWYEceaZRMxrMpAz4MyqtlTwmihDXRusv\nOwDHheOeBd5BlUTWATZGIjgEVR/ZPpzzKOB9JIodw/lWoNTs0rBve2BvYNtwjsiwPaqCYowxJg+U\nQmTZH4kV1IwGIzqg0lorgBlh3/7IPH094DFUmuv3KPo8DtgHidzVSADXQmbphwBjgAOAG9EYZQdU\nq/JTlFbtEN5jcTj/fBRRLgQ+RlHlt4DjUYrWGGNMHimFyHIJ8mbdDUV9OwIjgA+Q8N0LDEBR349R\n5DgERXjPAHuE525DYgZy9jkfVR7ZHqVYlwJfhOcnIRFcgma7HoX8ZavCcRXos69ERu5fI1/avyBx\nvwyZr49FdnyuOmKMMQ3EVUcaxgokUHuG+8/RmOGVaGzwBSRSEQuA28Mxr6PU6wDgDyiVOwyJ4QAk\nlsuQME5HaViQ+PVAYvwnVMPyHVTBpDeK6DsjMWwDjAqPv0F1Np9HwlxrVOmqI8YYkxtXHWkY3wCr\nkAn6HGBnVHqrd7hND8e1QbNTF6CIcEtUVWQacDcSy7uBw1GB54OBTZFATkCzWzcM55qBBLEDimCv\nIY4O3wbeQlFmZOKeZHG4GWOMKRBKQSyrkSCehYTv7fB4U5Re3QpNpumC6knOQ+nXD4FLw/HrAyeg\n6iNfoIiwCqV270alvmYQj4e+kHj/MjTmGW2vzmhftOQk29ITY4wxBUApiCVIJM9CEeNMlCbdBa1p\nvAB4DaVIr0FC1zPcz0ap20XATagmZcRjxCJIOC5JZEiQCttlZBfD6ox7Y4wxBUYpiGU1ErkX0SzV\nfYC7iCfj3Er2dGgZ8FEt+yMBLKd2a7pUxrbrWBpjTCulFKqOdAV+gCLKB3McF30WKTRbtSpjXyHh\nqiOtnFwVSeqDq5YY03BcdSQ3R6NlIN8nNiVIUTPaS25XZdnXktQp0q460tqpvSJJfXDVEmNallIQ\ny7+GW6EQpXGj6DW5LyJVy/7/4aojrRtXJDGmdVEKYtlSJIWtPPG4NnP1bHZ6ICehAUBbNPEoq2C6\n6ogxxrQcpWB315SU17IN6YJWjcQwKZTd0BKUHZEAnhX2twduQTNwu4bts4FTgF0pvPFSY4wpORxZ\npq9vTKZGs1Fdy3Z/oA8yPZgCHArsgNZwXotqVW4FvIus9LYFzgP+iXxh+yOnoIOBN4EnkC/sOcjU\n4JtG9s0YY0wTUKyR5WZIvMqAbyNx2gC58GSSFL1MoeyGKpb0QcYFJxF/Zg8gO7sd0PKTH6Eizmuh\nNZxboyixCtnhHYz8ZeeiaPIL4lJei5Dbz3rIpP165Az0DF5/aYwxeadYI8vHkKXcD4CDiC3m+oTn\n2yERWo2qe4xGazFvAq5CfrJPIaErR96tfwdOC9uzkAF6e1Rz8nfI+3UU8qCdjwRwLLLW+xDZ4U1D\nUWI3ZKLeC1nl9SD2ml2M1oRG9ntOwxpjTJ4pRrFcH3galdhaB62vbINEKoVSnxuhKO9uJJCnonTn\nfkjUhiDBvRtVAAEJ5yQ0tjgLech2DftvR4YHr6MyXRujqLYj8BlwMvKarUSRZx9U+eRcZOa+cWj3\nn5EgD0Pi/RRyFlqV2UlXHTHGmNy46khujgRGIr/WgSi92QGJT29Uf/JZJKgvooizNxLLSSjd2h8Y\nF873EUqpVqPPK6pFWYUiwrFI1J5G45IzUVS5PRLrGcg67yo0ZjkfCeeDxGs9byA2Wr8v3HLiqiPG\nGJMbVx3JzQ7Ip3UG8F2UUp2NUq/vEhsTzEOp1IVILEGCuD1KqW6HJt1sgqqJLCcuzPwuig63Q+OL\nl6JIcTGKWF8Nx84P530EeDhs/yy8x4OkG64nybX0xBhjTAtTjGJZhWafjkZjg9VobBEkQFujKLAy\nPH4LOCYcux2qd3kFmiT0X5RGnYbSpPeitOhs4E4kuADXhVuSOYntFPGs2w/De4OEO5ubkAXSGGMK\niGITy95I2C5HgrQ5Smn2RmOVXyDbu8OIJ+R0RJ9DD+DnKH0LcDNwIxqjPBulZieG82QjaaVXTU0z\ngUgAX0zsy7VMxRhjTIFQbGLZDi0RqUTiNQ2lSdujFOmdqOLI14nXLAP+keVcSX/YScRRZAUSvsxZ\nqpnC51msxhhTJJRC1ZHaqM2erjWU03LVkRJnTauWNBRXOTHFgKuO5CaqO5kr8mt1Y4SuOlLqrFnV\nkobiKiem1CkFsUxR+GODZYn784A/oaUurjpisuKqJca0LKUglvlkUzTemULCdy0yHFhBuhAm709B\n3rDTyJEOdtURY4xpOYrVG7YlSEaD0edYnvHcMGS5l0LG6CChhFgIK5CDz3eQh+1cYp/Ye9ESFmOM\nMXnEYplOd2KHnl7INzZ6XFtJrqRxQHXGcycj67wDkVj+BTgD+A9yEdoSLUm5HS1P6YAMFbYDLkCz\ndD+jtCdiGWNM3rFYxpQhw4Ffhcf9gMPROkuIhTD6zDZBDj8bAaej9Zq/RP6yEKe4hwNDkWF6FySQ\nvwbuRw5D6yO3oVvQ2s+3wvYcVHUECn92rjHGFDUWy3QeQWW4BiKxWgR0RsL3O+ATZFRQAZyPIsbt\nkJlBf2SSPiCcK/KSfQWt0fwCuQQtQYI4GlUVGYB8aLuG1y1CdnndgR83V0eNMcbUH0/wSedjJHo7\nIJFcin5QHIeiv62QEfuZKI26HqoIshDYCdngLQrnSq7XHI+i0DlIFHsgA4UuaCJPbxRhRiwmngx0\nI3BRZkNddcQYY3LTlFVHPBaWzgUo2lsM7I4iwGlIJIche7ztkQvQEyhNuxESya6omPN1wJRwvsgP\n9iTgWJR2PQ1N+gF4EtnqHYsm/oxE6d9+wJtoDLMaLSNJkrrzTmdmTcsxdepdXHutZ2Cb1o1NCZqO\nSlSi61XkH7snqk85GXgDTdJpi0RwBapEcgKwM6qJeTrwQ5SmrSKOLMegSBJUfeR14gLRAI8m2jA9\n3EA1OI0xxuQZi2U6c9Hs1d+jqO+vSDgfQanZl4grlVyEqpJEkeU9xCbpSV9Z0FrLSWH7GzTD1Rhj\nTCvBYpnObGSsDqoucgmqXbkSCejdwILE8ZOBy8L2fOL6lcYYY4oIi2U6b4cbaHLP8MRzy4iF1Bhj\nTAnhCT6tE1cdMS1KssqJK5CY1oon+JQgrjpiWpa4yokrkJhSxGJZGETmENHazHLqqKvpqiOmJXGV\nE1PqWCybj6iqSFRYuipjf5LMepp11td01RFjjGk5bHfXMMqRsw9AH+K1kxciQ4IkkSBWEwtleWJ/\nGyScZcBuyKzgZOQK9Du0NvP6LOc1xhjTwlgsY9ZBTj2HoLWTUemtCuLP6SjgF2H7h8SR+cPI0CCi\nC6pl2ROt27wI2dlVo+LOLwKvoaom7YAbgIOR9+yPkQHC7uH8BzZpL40xxjQYp2FFW2RsXglMResq\nf4X8YJMsCc/1RNVF+gB/BPZGhukpZKreIxzzCjArHDsPeBkZp18MfI1s7xYBE1HZrrHAWcgV6HDk\nIDQLaE9cB9MYY0wLY7EUVcj39TYkXA8CxyBxPA2J2HVI2FYBe6F1mJsgQd0J+Aq5/VQgo4JVSBR/\nC7wA7A8MCsfPRaK8OJzjHZR+BZiJhPsn6O9TTT3GMI0xxjQfFktRjQwHDkVRYSWyp5sG/Bv4KTI7\n/xdKsb6CKoWshYTvIyR2y1EprnJkyP5xOD4as/wqvG4TJLYdkAvQTsCG4ZiHkFA/gyqVPIsqkKTh\nqiPGGJObpqw6YrGMqUKiOA6lPKtQlPh/wAHIB/Y/KA3bG0WZW4XXzkBm6stQRNkVWeetjSbozESl\nv8Ygk/Qb0VjlSOQz2x6JLsDnqKrJw6ikV1Yz9cMPH9YEXTbGmOJl0KBBDBo06H+Pr7zyykafy2IZ\nMwG4Hc1E3Rl4ABgB3Iom4xyJRLQajUd+hsYnD0CiuikS0hTQEUWRn4b7OSi1+1l4fFi4j3gloy2L\nw80YY0wBYLGMWYhE7FlgXyR0/YFLSV8vOT9sfwL8HeiOJu68g9KwNxGnXR9InH9sYjsplMYYYwoc\ni2XMfGA74HKUEh2GJvhsgSb9zEEzWO9OvOYPWc5TlWWfMcaYVozFMuYNYMss+ydl2deURBFrNYpg\nI5PfWq3ujDHGtCyuOtK87AtsDNwXHmezuktSQXpkWtv6SlcdMXkjWYHEmNZAVCnHVUfyQzICzBTB\n6PFgNA76KZoJGx3TFuiE0ryDkaBOAZ5G1ne3IdF8A1np1Vhn6aojJn/EFUiMaQ00RaUci2U66yK7\nuwFo3eQLaG1lZsQHsfCVky5mkVBujJZ93AacjsRyO+BmtJRkDvBX4LvAeGB7YAHwJrLISwHnAiei\nWblpuOqIyReuQGJKkVIRy8woMDI0j0QuErwtgF8jQVuNTArGIXHrgMS0LYoCByIBHQdsg5aRnI2E\ndXU4Zy/gGmBbtJxkYbi/Di1VuQnNqv0SmR50QqJ6I7B5ODY5o/Z/uOqIMca0HMVgpN6d2Gy8LRKr\nzJx0sjZkColcdcbzoBmxH6AZrzciU4EKtK7yJWQWcC2KPHsAvwyv2xFFhyChBInrzsg4fStUUWQe\nMi2YhEwJ1gb2COd7EI1tDkazcfdHkaerjhhjTJ4pdLGMKn5U5DimDdAtbK9CQpgcP1wXVfAYHB73\nBu4HHgVOyTjXbBQNXoKEqweK+uYhX9cTkbHA0Wg95tooXXsUErskBwNvh/b/MRyzMrSxW9j+N/KT\n/QzohyqfTAzv9SyKSL9CE32MMcbkiZZOw66LorRqlIZMGoVnjv1B7jWL3ZA36yw0/gcSpNOQuP4a\npThvRVHeTOTEczYaF3wTRY8vIw9YkDCtQlHfKJRePQL5tP4RVRmJvGHLkSnBOSi6jWatRv04MrQn\ncuI5BU3eaRs+h3nAE+H1e6Hxyq+Rt+xRoS1Zre6MMca0LE0tllEx42TaEyQw/0ViUImipgnEKUuI\nhbIdiroAvo2EZWdkMD4WRYZ/Q6L0KnAF8lHtj9KiQ9GY4mI0WWcmqicZcSiKMivRbNMdkF9r9P4r\ngavC9mA0NlmGxOzC8PrdkUA+jPxi38noCyiq7EoslhcjUT88fA7R55Vtps7cxHZdy02MMcY0M/UR\ny3WAviiqmoBKS0Vp0eQkmehxtgv7EmQyflBi336oIPIeSJzuQlFnCjgDVeN4GE22mYwMzY9DEeMN\nSHwjJiFBfhyJWRdUGqt/aHNyNusSNFN1HLABihKrE8esAO5Akd+eKPp8EdWYfBwZn7+f+AzmIWH8\nhthcACSsEItdNnOD5IQjiI0JMo+pgauOGGNMbiZMGMXEiaNYvHgsw4bNXKNz1bU4szOK6FYSi0ht\nq+F7IWHdBgnqWNLXID6HBGQVirZuQAIzGoliD1S94zQkYlcjQTsWpSZfRsss/owKM3+YeO+RSEzH\nofTsXsAuaNLNfkgQVyFR2wWJbh80O/Wy0N42KDo8BtgMRZszkDguq6XPQ1AB56vCeyWjwGjGbXNE\nhak773SwaYwx9WHq1Lu49tpzmtWU4DsoqhqesX8oEqRewPlIpJ5AY4RfAWcBP0JjgdFSiunAn1Bk\n90eUkvwApVRB6cljUJr1PSQ241Gdxy/Q2GQPJJK7h/Otg6LOFUj8eqFJOJsD/wCeCu9/HJokswhN\nqpmNlml8itKrhDaWoeixNqI0c1Svchnyh/0kPJ9UMBdsNsaYIqEusZyGJrh8D0WDb6O04+vAk6iI\n8YmoyPFc5EDzBPAYEqxpxCnGKuBKNMZHeD5KjW6KRPE8FBmejsYElyG/1heQOO2JosrrUBr2UxSt\nPoCiw5VoAf90JLCE9jyR6FMZEuNsZK7DhOxp5mifPeeMMaYEqEss30Tjf2eipQ3PoaiwEkWU26DZ\nnd3R8ofO4XUz0JKKJHOQuEasQGOHFUhU26LlFx+g9Y7tURQYTfa5GkWloMoglybOlRTDiVn6EZmV\nR0KXy6w8WodpjDHGAPWb4PN8uAHcgpY1RPUcb0VrEgcggdw8HLcUCSnEwjQHzQ6NeA2tUywjnoF6\nNelFj2eE+wo0USci03knSo9GS1AyxwozU6Ie8DPGGFNv6hLL9mgssD0SxCXAR2g5xcloIkw34sX0\nO4TXPYnWQEIcGd5OukgliyGDotWI5ESZ5EzWzGUUkQgmxdFjhcYYY5qUusQyBXwf+BaaFPMcSs1O\nRunSaShijGaLPoPEbUx4nBS3bNFcNiOCzGOratlvjDHGtAh1ieVKZAR+Tcb+OcSuOUnKicUtW6WO\nTBwFNpKmKDljjDGlQM+ea+4YWt/1JtEEGYgFsDnXEZrcpFIpf+zGGNMQWqL4c7YI0FGhMcaYkqDQ\nq44YY4wxecdiaYwxxtSBxdIYY4ypA4ulMcYYUwcWS2OMMaYOLJbGGGNMHVgsjTHGmDqwWBpjjDF1\nYLE0xhhj6sBiaYwxxtSBxdIYY4ypA4ulMcYYUwcWS2OMMaYOLJam4Bg1alS+m9CsuH+tl2LuGxR/\n/9YEi6UpOIr9H9b9a70Uc9+g+Pu3JlgsjTHGmDqwWBpjjDF1UJbvBphG8R6wQ74bYYwxrYzxwI75\nboQxxhhjjDHGGGOMMcYYUwQcAnwKfAZcnOe2NIZ7gDnAB4l93YHngYnAc0C3xHOXor5+Cny7hdq4\nJvQHXgI+Aj4Efhb2F0sfOwBj0Lj5x8B1YX+x9A+gAhgHjAyPi6lvU4D3Uf/eCvuKqX/dgEeBT9D3\nc3eKq3+mnlQAnwMbAm3RBWurfDaoEewL7ES6WN4IXBS2LwauD9tboz62RX3+nMKfwd2beAJBZ2AC\n+hsVUx87hvs2wJvAPhRX/y4AHgCeCo+LqW+TkXgkKab+3QecGbbbAF0prv6ZerIn8O/E40vCrbWx\nIeli+SnQK2z3Do9Bv/qS0fO/gT2au3FNzJPAtyjOPnYE3ga2oXj61w/4L3AAcWRZLH0DieW6GfuK\npX9dgUlZ9jdJ/6yirYu+wJeJx9PDvtZOL5SaJdxHX+w+qI8Rra2/G6IoegzF1cdy9It8DnHKuVj6\n9zvgQqA6sa9Y+gaQQj8G3gHODvuKpX8bAfOAe4F3gbuBTjRR/yyWrYtUvhvQAqTI3c/W8hl0Bh4D\nhgJLMp5r7X2sRqnmfsB+KApL0lr7dxgwF43n1bYGvbX2LWJv9ANuCHAuGhZJ0pr71wbYGfhjuF9K\nzcxbo/tnsWxdzEATSCL6k/7LqLUyB6VHANZHFyyo2d9+YV+h0xYJ5d9QGhaKr48AlcC/gF0ojv7t\nBRyBUpUPAgeiv2Ex9C1iVrifBzwB7Ebx9G96uL0dHj+KRHM2xdE/0wDaAF+g9F47WucEH6g5Znkj\n8djBJdQcgG+HUixfUPiuU2XA/Sidl6RY+rge8WzCtYDRwEEUT/8i9icesyyWvnUEuoTtTsBraAZo\nsfQP9H3cPGwPQ30rpv6ZBjAEzbD8HA1QtzYeBGYCK9H46xlodt5/yT61+zLU10+BwS3a0saxD0pT\nvofSeePQcp9i6eN2aDzoPbQE4cKwv1j6F7E/8WzYYunbRujv9h5a1hRdP4qlfyAb0LeRrd3jaNJP\nMfXPGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGNMy9EbeAitQ3sHufVs1oTn3x8VBzCm\n4LHdnTEmG2XIDu1FYFNgIFrE3ivXixrIAchizhhjjGmVHAi8XMtzNyG7wveB48O+QcT2cAC3A6eF\n7SnIemxseM0WyPJwFvLyHIecj4wpWNrkuwHGmIJkWyRumXwXWYptD/RA1mKjsxyXrO6QQsbduwA/\nBn6JykPdgSqyDG/KhhvTHDgNa4zJRm2livYGRoTn56Loc9ccx0c8Hu7fRVFlhI2rTavAYmmMycZH\nKBLMRqbApYDVpF9P1so4ZkW4r8IZLdMKsVgaY7LxItAepUsjtgcWAyega0cPVPz5LWAaKnnUDlV1\nOLAe77GEuGSUMQWNf+EZY2rjaOAWVAvwG1QU+XygMyqBlEIluqJiuo+g0k+TUbo1G8mxzJGoQO+R\nwE9RfUVjjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY1oP/w/jKJluINno\nnwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7fe150052c10>"
]
}
],
"prompt_number": 47
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.display import Image"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 49
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Image(url=\"http://ct.light42.com/www_shared/bernt_misc/bay_area_coverage_submetro.png\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<img src=\"http://ct.light42.com/www_shared/bernt_misc/bay_area_coverage_submetro.png\"/>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 51,
"text": [
"<IPython.core.display.Image at 0x7fe1427f1ed0>"
]
}
],
"prompt_number": 51
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment