Last active
November 22, 2020 03:03
-
-
Save darrell/6056046 to your computer and use it in GitHub Desktop.
Code to generate Voronoi diagrams in PostGIS using Python. Many thanks to everyone who contributed to this code. Original blog post describing the work is here: http://geogeek.garnix.org/2012/04/faster-voronoi-diagrams-in-postgis.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
CREATE OR REPLACE FUNCTION voronoi(table_name text,geom_col text) returns SETOF record as $$ | |
############################################################################# | |
# | |
# Voronoi diagram calculator/ Delaunay triangulator | |
# Translated to Python by Bill Simons | |
# September, 2005 | |
# | |
# Additional changes by Carson Farmer added November 2010 | |
# | |
# Converted to pl/python function by Darrell Fuhriman, April 2012 | |
# based on code from: | |
# https://svn.osgeo.org/qgis/trunk/qgis/python/plugins/fTools/tools/voronoi.py | |
# | |
# Calculate Delaunay triangulation or the Voronoi polygons for a set of | |
# 2D input points. | |
# | |
# Derived from code bearing the following notice: | |
# | |
# The author of this software is Steven Fortune. Copyright (c) 1994 by AT&T | |
# Bell Laboratories. | |
# Permission to use, copy, modify, and distribute this software for any | |
# purpose without fee is hereby granted, provided that this entire notice | |
# is included in all copies of any software which is or includes a copy | |
# or modification of this software and in all copies of the supporting | |
# documentation for such software. | |
# THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | |
# WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY | |
# REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | |
# OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | |
# | |
# Comments were incorporated from Shane O'Sullivan's translation of the | |
# original code into C++ (http://mapviewer.skynet.ie/voronoi.html) | |
# | |
# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html | |
# | |
############################################################################# | |
import math | |
import sys | |
import getopt | |
TOLERANCE = 1e-9 | |
BIG_FLOAT = 1e38 | |
#------------------------------------------------------------------ | |
class Context(object): | |
def __init__(self): | |
self.doPrint = 0 | |
self.debug = 0 | |
self.plot = 0 | |
self.triangulate = False | |
self.vertices = [] # list of vertex 2-tuples: (x,y) | |
self.lines = [] # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c | |
self.edges = [] # edge 3-tuple: (line index, vertex 1 index, vertex 2 index) if either vertex index is -1, the edge extends to infiinity | |
self.triangles = [] # 3-tuple of vertex indices | |
self.polygons = {} # a dict of site:[edges] pairs | |
def circle(self,x,y,rad): | |
pass | |
def clip_line(self,edge): | |
pass | |
def line(self,x0,y0,x1,y1): | |
pass | |
def outSite(self,s): | |
if(self.debug): | |
print "site (%d) at %f %f" % (s.sitenum, s.x, s.y) | |
elif(self.triangulate): | |
pass | |
elif(self.plot): | |
self.circle (s.x, s.y, cradius) | |
elif(self.doPrint): | |
print "s %f %f" % (s.x, s.y) | |
def outVertex(self,s): | |
self.vertices.append((s.x,s.y)) | |
if(self.debug): | |
print "vertex(%d) at %f %f" % (s.sitenum, s.x, s.y) | |
elif(self.triangulate): | |
pass | |
elif(self.doPrint and not self.plot): | |
print "v %f %f" % (s.x,s.y) | |
def outTriple(self,s1,s2,s3): | |
self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum)) | |
if(self.debug): | |
print "circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum) | |
elif(self.triangulate and self.doPrint and not self.plot): | |
print "%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum) | |
def outBisector(self,edge): | |
self.lines.append((edge.a, edge.b, edge.c)) | |
if(self.debug): | |
print "line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b, edge.c, edge.reg[0].sitenum, edge.reg[1].sitenum) | |
elif(self.triangulate): | |
if(self.plot): | |
self.line(edge.reg[0].x, edge.reg[0].y, edge.reg[1].x, edge.reg[1].y) | |
elif(self.doPrint and not self.plot): | |
print "l %f %f %f" % (edge.a, edge.b, edge.c) | |
def outEdge(self,edge): | |
sitenumL = -1 | |
if edge.ep[Edge.LE] is not None: | |
sitenumL = edge.ep[Edge.LE].sitenum | |
sitenumR = -1 | |
if edge.ep[Edge.RE] is not None: | |
sitenumR = edge.ep[Edge.RE].sitenum | |
if edge.reg[0].sitenum not in self.polygons: | |
self.polygons[edge.reg[0].sitenum] = [] | |
if edge.reg[1].sitenum not in self.polygons: | |
self.polygons[edge.reg[1].sitenum] = [] | |
self.polygons[edge.reg[0].sitenum].append((edge.edgenum,sitenumL,sitenumR)) | |
self.polygons[edge.reg[1].sitenum].append((edge.edgenum,sitenumL,sitenumR)) | |
self.edges.append((edge.edgenum,sitenumL,sitenumR)) | |
if(not self.triangulate): | |
if self.plot: | |
self.clip_line(edge) | |
elif(self.doPrint): | |
print "e %d" % edge.edgenum, | |
print " %d " % sitenumL, | |
print "%d" % sitenumR | |
#------------------------------------------------------------------ | |
def voronoi(siteList,context): | |
try: | |
edgeList = EdgeList(siteList.xmin,siteList.xmax,len(siteList)) | |
priorityQ = PriorityQueue(siteList.ymin,siteList.ymax,len(siteList)) | |
siteIter = siteList.iterator() | |
bottomsite = siteIter.next() | |
context.outSite(bottomsite) | |
newsite = siteIter.next() | |
minpt = Site(-BIG_FLOAT,-BIG_FLOAT) | |
while True: | |
if not priorityQ.isEmpty(): | |
minpt = priorityQ.getMinPt() | |
if (newsite and (priorityQ.isEmpty() or cmp(newsite,minpt) < 0)): | |
# newsite is smallest - this is a site event | |
context.outSite(newsite) | |
# get first Halfedge to the LEFT and RIGHT of the new site | |
lbnd = edgeList.leftbnd(newsite) | |
rbnd = lbnd.right | |
# if this halfedge has no edge, bot = bottom site (whatever that is) | |
# create a new edge that bisects | |
bot = lbnd.rightreg(bottomsite) | |
edge = Edge.bisect(bot,newsite) | |
context.outBisector(edge) | |
# create a new Halfedge, setting its pm field to 0 and insert | |
# this new bisector edge between the left and right vectors in | |
# a linked list | |
bisector = Halfedge(edge,Edge.LE) | |
edgeList.insert(lbnd,bisector) | |
# if the new bisector intersects with the left edge, remove | |
# the left edge's vertex, and put in the new one | |
p = lbnd.intersect(bisector) | |
if p is not None: | |
priorityQ.delete(lbnd) | |
priorityQ.insert(lbnd,p,newsite.distance(p)) | |
# create a new Halfedge, setting its pm field to 1 | |
# insert the new Halfedge to the right of the original bisector | |
lbnd = bisector | |
bisector = Halfedge(edge,Edge.RE) | |
edgeList.insert(lbnd,bisector) | |
# if this new bisector intersects with the right Halfedge | |
p = bisector.intersect(rbnd) | |
if p is not None: | |
# push the Halfedge into the ordered linked list of vertices | |
priorityQ.insert(bisector,p,newsite.distance(p)) | |
newsite = siteIter.next() | |
elif not priorityQ.isEmpty(): | |
# intersection is smallest - this is a vector (circle) event | |
# pop the Halfedge with the lowest vector off the ordered list of | |
# vectors. Get the Halfedge to the left and right of the above HE | |
# and also the Halfedge to the right of the right HE | |
lbnd = priorityQ.popMinHalfedge() | |
llbnd = lbnd.left | |
rbnd = lbnd.right | |
rrbnd = rbnd.right | |
# get the Site to the left of the left HE and to the right of | |
# the right HE which it bisects | |
bot = lbnd.leftreg(bottomsite) | |
top = rbnd.rightreg(bottomsite) | |
# output the triple of sites, stating that a circle goes through them | |
mid = lbnd.rightreg(bottomsite) | |
context.outTriple(bot,top,mid) | |
# get the vertex that caused this event and set the vertex number | |
# couldn't do this earlier since we didn't know when it would be processed | |
v = lbnd.vertex | |
siteList.setSiteNumber(v) | |
context.outVertex(v) | |
# set the endpoint of the left and right Halfedge to be this vector | |
if lbnd.edge.setEndpoint(lbnd.pm,v): | |
context.outEdge(lbnd.edge) | |
if rbnd.edge.setEndpoint(rbnd.pm,v): | |
context.outEdge(rbnd.edge) | |
# delete the lowest HE, remove all vertex events to do with the | |
# right HE and delete the right HE | |
edgeList.delete(lbnd) | |
priorityQ.delete(rbnd) | |
edgeList.delete(rbnd) | |
# if the site to the left of the event is higher than the Site | |
# to the right of it, then swap them and set 'pm' to RIGHT | |
pm = Edge.LE | |
if bot.y > top.y: | |
bot,top = top,bot | |
pm = Edge.RE | |
# Create an Edge (or line) that is between the two Sites. This | |
# creates the formula of the line, and assigns a line number to it | |
edge = Edge.bisect(bot, top) | |
context.outBisector(edge) | |
# create a HE from the edge | |
bisector = Halfedge(edge, pm) | |
# insert the new bisector to the right of the left HE | |
# set one endpoint to the new edge to be the vector point 'v' | |
# If the site to the left of this bisector is higher than the right | |
# Site, then this endpoint is put in position 0; otherwise in pos 1 | |
edgeList.insert(llbnd, bisector) | |
if edge.setEndpoint(Edge.RE - pm, v): | |
context.outEdge(edge) | |
# if left HE and the new bisector don't intersect, then delete | |
# the left HE, and reinsert it | |
p = llbnd.intersect(bisector) | |
if p is not None: | |
priorityQ.delete(llbnd); | |
priorityQ.insert(llbnd, p, bot.distance(p)) | |
# if right HE and the new bisector don't intersect, then reinsert it | |
p = bisector.intersect(rrbnd) | |
if p is not None: | |
priorityQ.insert(bisector, p, bot.distance(p)) | |
else: | |
break | |
he = edgeList.leftend.right | |
while he is not edgeList.rightend: | |
context.outEdge(he.edge) | |
he = he.right | |
Edge.EDGE_NUM = 0 | |
except Exception, err: | |
print "######################################################" | |
print str(err) | |
#------------------------------------------------------------------ | |
def isEqual(a,b,relativeError=TOLERANCE): | |
# is nearly equal to within the allowed relative error | |
norm = max(abs(a),abs(b)) | |
return (norm < relativeError) or (abs(a - b) < (relativeError * norm)) | |
#------------------------------------------------------------------ | |
class Site(object): | |
def __init__(self,x=0.0,y=0.0,sitenum=0): | |
self.x = x | |
self.y = y | |
self.sitenum = sitenum | |
def dump(self): | |
print "Site #%d (%g, %g)" % (self.sitenum,self.x,self.y) | |
def __cmp__(self,other): | |
if self.y < other.y: | |
return -1 | |
elif self.y > other.y: | |
return 1 | |
elif self.x < other.x: | |
return -1 | |
elif self.x > other.x: | |
return 1 | |
else: | |
return 0 | |
def distance(self,other): | |
dx = self.x - other.x | |
dy = self.y - other.y | |
return math.sqrt(dx*dx + dy*dy) | |
#------------------------------------------------------------------ | |
class Edge(object): | |
LE = 0 | |
RE = 1 | |
EDGE_NUM = 0 | |
DELETED = {} # marker value | |
def __init__(self): | |
self.a = 0.0 | |
self.b = 0.0 | |
self.c = 0.0 | |
self.ep = [None,None] | |
self.reg = [None,None] | |
self.edgenum = 0 | |
def dump(self): | |
print "(#%d a=%g, b=%g, c=%g)" % (self.edgenum,self.a,self.b,self.c) | |
print "ep",self.ep | |
print "reg",self.reg | |
def setEndpoint(self, lrFlag, site): | |
self.ep[lrFlag] = site | |
if self.ep[Edge.RE - lrFlag] is None: | |
return False | |
return True | |
@staticmethod | |
def bisect(s1,s2): | |
newedge = Edge() | |
newedge.reg[0] = s1 # store the sites that this edge is bisecting | |
newedge.reg[1] = s2 | |
# to begin with, there are no endpoints on the bisector - it goes to infinity | |
# ep[0] and ep[1] are None | |
# get the difference in x dist between the sites | |
dx = float(s2.x - s1.x) | |
dy = float(s2.y - s1.y) | |
adx = abs(dx) # make sure that the difference in positive | |
ady = abs(dy) | |
# get the slope of the line | |
newedge.c = float(s1.x * dx + s1.y * dy + (dx*dx + dy*dy)*0.5) | |
if adx > ady : | |
# set formula of line, with x fixed to 1 | |
newedge.a = 1.0 | |
newedge.b = dy/dx | |
newedge.c /= dx | |
else: | |
# set formula of line, with y fixed to 1 | |
newedge.b = 1.0 | |
newedge.a = dx/dy | |
newedge.c /= dy | |
newedge.edgenum = Edge.EDGE_NUM | |
Edge.EDGE_NUM += 1 | |
return newedge | |
#------------------------------------------------------------------ | |
class Halfedge(object): | |
def __init__(self,edge=None,pm=Edge.LE): | |
self.left = None # left Halfedge in the edge list | |
self.right = None # right Halfedge in the edge list | |
self.qnext = None # priority queue linked list pointer | |
self.edge = edge # edge list Edge | |
self.pm = pm | |
self.vertex = None # Site() | |
self.ystar = BIG_FLOAT | |
def dump(self): | |
print "Halfedge--------------------------" | |
print "left: ", self.left | |
print "right: ", self.right | |
print "edge: ", self.edge | |
print "pm: ", self.pm | |
print "vertex: ", | |
if self.vertex: self.vertex.dump() | |
else: print "None" | |
print "ystar: ", self.ystar | |
def __cmp__(self,other): | |
if self.ystar > other.ystar: | |
return 1 | |
elif self.ystar < other.ystar: | |
return -1 | |
elif self.vertex.x > other.vertex.x: | |
return 1 | |
elif self.vertex.x < other.vertex.x: | |
return -1 | |
else: | |
return 0 | |
def leftreg(self,default): | |
if not self.edge: | |
return default | |
elif self.pm == Edge.LE: | |
return self.edge.reg[Edge.LE] | |
else: | |
return self.edge.reg[Edge.RE] | |
def rightreg(self,default): | |
if not self.edge: | |
return default | |
elif self.pm == Edge.LE: | |
return self.edge.reg[Edge.RE] | |
else: | |
return self.edge.reg[Edge.LE] | |
# returns True if p is to right of halfedge self | |
def isPointRightOf(self,pt): | |
e = self.edge | |
topsite = e.reg[1] | |
right_of_site = pt.x > topsite.x | |
if(right_of_site and self.pm == Edge.LE): | |
return True | |
if(not right_of_site and self.pm == Edge.RE): | |
return False | |
if(e.a == 1.0): | |
dyp = pt.y - topsite.y | |
dxp = pt.x - topsite.x | |
fast = 0; | |
if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)): | |
above = dyp >= e.b * dxp | |
fast = above | |
else: | |
above = pt.x + pt.y * e.b > e.c | |
if(e.b < 0.0): | |
above = not above | |
if (not above): | |
fast = 1 | |
if (not fast): | |
dxs = topsite.x - (e.reg[0]).x | |
above = e.b * (dxp*dxp - dyp*dyp) < dxs*dyp*(1.0+2.0*dxp/dxs + e.b*e.b) | |
if(e.b < 0.0): | |
above = not above | |
else: # e.b == 1.0 | |
yl = e.c - e.a * pt.x | |
t1 = pt.y - yl | |
t2 = pt.x - topsite.x | |
t3 = yl - topsite.y | |
above = t1*t1 > t2*t2 + t3*t3 | |
if(self.pm==Edge.LE): | |
return above | |
else: | |
return not above | |
#-------------------------- | |
# create a new site where the Halfedges el1 and el2 intersect | |
def intersect(self,other): | |
e1 = self.edge | |
e2 = other.edge | |
if (e1 is None) or (e2 is None): | |
return None | |
# if the two edges bisect the same parent return None | |
if e1.reg[1] is e2.reg[1]: | |
return None | |
d = e1.a * e2.b - e1.b * e2.a | |
if isEqual(d,0.0): | |
return None | |
xint = (e1.c*e2.b - e2.c*e1.b) / d | |
yint = (e2.c*e1.a - e1.c*e2.a) / d | |
if(cmp(e1.reg[1],e2.reg[1]) < 0): | |
he = self | |
e = e1 | |
else: | |
he = other | |
e = e2 | |
rightOfSite = xint >= e.reg[1].x | |
if((rightOfSite and he.pm == Edge.LE) or | |
(not rightOfSite and he.pm == Edge.RE)): | |
return None | |
# create a new site at the point of intersection - this is a new | |
# vector event waiting to happen | |
return Site(xint,yint) | |
#------------------------------------------------------------------ | |
class EdgeList(object): | |
def __init__(self,xmin,xmax,nsites): | |
if xmin > xmax: xmin,xmax = xmax,xmin | |
self.hashsize = int(2*math.sqrt(nsites+4)) | |
self.xmin = xmin | |
self.deltax = float(xmax - xmin) | |
self.hash = [None]*self.hashsize | |
self.leftend = Halfedge() | |
self.rightend = Halfedge() | |
self.leftend.right = self.rightend | |
self.rightend.left = self.leftend | |
self.hash[0] = self.leftend | |
self.hash[-1] = self.rightend | |
def insert(self,left,he): | |
he.left = left | |
he.right = left.right | |
left.right.left = he | |
left.right = he | |
def delete(self,he): | |
he.left.right = he.right | |
he.right.left = he.left | |
he.edge = Edge.DELETED | |
# Get entry from hash table, pruning any deleted nodes | |
def gethash(self,b): | |
if(b < 0 or b >= self.hashsize): | |
return None | |
he = self.hash[b] | |
if he is None or he.edge is not Edge.DELETED: | |
return he | |
# Hash table points to deleted half edge. Patch as necessary. | |
self.hash[b] = None | |
return None | |
def leftbnd(self,pt): | |
# Use hash table to get close to desired halfedge | |
bucket = int(((pt.x - self.xmin)/self.deltax * self.hashsize)) | |
if(bucket < 0): | |
bucket =0; | |
if(bucket >=self.hashsize): | |
bucket = self.hashsize-1 | |
he = self.gethash(bucket) | |
if(he is None): | |
i = 1 | |
while True: | |
he = self.gethash(bucket-i) | |
if (he is not None): break; | |
he = self.gethash(bucket+i) | |
if (he is not None): break; | |
i += 1 | |
# Now search linear list of halfedges for the corect one | |
if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)): | |
he = he.right | |
while he is not self.rightend and he.isPointRightOf(pt): | |
he = he.right | |
he = he.left; | |
else: | |
he = he.left | |
while (he is not self.leftend and not he.isPointRightOf(pt)): | |
he = he.left | |
# Update hash table and reference counts | |
if(bucket > 0 and bucket < self.hashsize-1): | |
self.hash[bucket] = he | |
return he | |
#------------------------------------------------------------------ | |
class PriorityQueue(object): | |
def __init__(self,ymin,ymax,nsites): | |
self.ymin = ymin | |
self.deltay = ymax - ymin | |
self.hashsize = int(4 * math.sqrt(nsites)) | |
self.count = 0 | |
self.minidx = 0 | |
self.hash = [] | |
for i in range(self.hashsize): | |
self.hash.append(Halfedge()) | |
def __len__(self): | |
return self.count | |
def isEmpty(self): | |
return self.count == 0 | |
def insert(self,he,site,offset): | |
he.vertex = site | |
he.ystar = site.y + offset | |
last = self.hash[self.getBucket(he)] | |
next = last.qnext | |
while((next is not None) and cmp(he,next) > 0): | |
last = next | |
next = last.qnext | |
he.qnext = last.qnext | |
last.qnext = he | |
self.count += 1 | |
def delete(self,he): | |
if (he.vertex is not None): | |
last = self.hash[self.getBucket(he)] | |
while last.qnext is not he: | |
last = last.qnext | |
last.qnext = he.qnext | |
self.count -= 1 | |
he.vertex = None | |
def getBucket(self,he): | |
bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize) | |
if bucket < 0: bucket = 0 | |
if bucket >= self.hashsize: bucket = self.hashsize-1 | |
if bucket < self.minidx: self.minidx = bucket | |
return bucket | |
def getMinPt(self): | |
while(self.hash[self.minidx].qnext is None): | |
self.minidx += 1 | |
he = self.hash[self.minidx].qnext | |
x = he.vertex.x | |
y = he.ystar | |
return Site(x,y) | |
def popMinHalfedge(self): | |
curr = self.hash[self.minidx].qnext | |
self.hash[self.minidx].qnext = curr.qnext | |
self.count -= 1 | |
return curr | |
#------------------------------------------------------------------ | |
class SiteList(object): | |
def __init__(self,pointList): | |
self.__sites = [] | |
self.__sitenum = 0 | |
self.__xmin = pointList[0].x | |
self.__ymin = pointList[0].y | |
self.__xmax = pointList[0].x | |
self.__ymax = pointList[0].y | |
for i,pt in enumerate(pointList): | |
self.__sites.append(Site(pt.x,pt.y,i)) | |
if pt.x < self.__xmin: self.__xmin = pt.x | |
if pt.y < self.__ymin: self.__ymin = pt.y | |
if pt.x > self.__xmax: self.__xmax = pt.x | |
if pt.y > self.__ymax: self.__ymax = pt.y | |
self.__sites.sort() | |
def setSiteNumber(self,site): | |
site.sitenum = self.__sitenum | |
self.__sitenum += 1 | |
class Iterator(object): | |
def __init__(this,lst): this.generator = (s for s in lst) | |
def __iter__(this): return this | |
def next(this): | |
try: | |
return this.generator.next() | |
except StopIteration: | |
return None | |
def iterator(self): | |
return SiteList.Iterator(self.__sites) | |
def __iter__(self): | |
return SiteList.Iterator(self.__sites) | |
def __len__(self): | |
return len(self.__sites) | |
def _getxmin(self): return self.__xmin | |
def _getymin(self): return self.__ymin | |
def _getxmax(self): return self.__xmax | |
def _getymax(self): return self.__ymax | |
xmin = property(_getxmin) | |
ymin = property(_getymin) | |
xmax = property(_getxmax) | |
ymax = property(_getymax) | |
def clip_voronoi( edges, c, width, height, extent, exX, exY ): | |
""" Clip voronoi function based on code written for Inkscape | |
Copyright (C) 2010 Alvin Penner, [email protected] | |
""" | |
def clip_line( x1, y1, x2, y2, w, h, x, y ): | |
if x1 < 0 - x and x2 < 0 - x: | |
return [ 0, 0, 0, 0 ] | |
if x1 > w + x and x2 > w + x: | |
return [ 0, 0, 0, 0 ] | |
if x1 < 0 - x: | |
y1 = ( y1 * x2 - y2 * x1 ) / ( x2 - x1 ) | |
x1 = 0 - x | |
if x2 < 0 - x: | |
y2 = ( y1 * x2 - y2 * x1 ) / ( x2 - x1 ) | |
x2 = 0 - x | |
if x1 > w + x: | |
y1 = y1 + ( w + x - x1 ) * ( y2 - y1 ) / ( x2 - x1 ) | |
x1 = w + x | |
if x2 > w + x: | |
y2 = y1 + ( w + x - x1 ) *( y2 - y1 ) / ( x2 - x1 ) | |
x2 = w + x | |
if y1 < 0 - y and y2 < 0 - y: | |
return [ 0, 0, 0, 0 ] | |
if y1 > h + y and y2 > h + y: | |
return [ 0, 0, 0, 0 ] | |
if x1 == x2 and y1 == y2: | |
return [ 0, 0, 0, 0 ] | |
if y1 < 0 - y: | |
x1 = ( x1 * y2 - x2 * y1 ) / ( y2 - y1 ) | |
y1 = 0 - y | |
if y2 < 0 - y: | |
x2 = ( x1 * y2 - x2 * y1 ) / ( y2 - y1 ) | |
y2 = 0 - y | |
if y1 > h + y: | |
x1 = x1 + ( h + y - y1 ) * ( x2 - x1 ) / ( y2 - y1 ) | |
y1 = h + y | |
if y2 > h + y: | |
x2 = x1 + ( h + y - y1) * ( x2 - x1 ) / ( y2 - y1 ) | |
y2 = h + y | |
return [ x1, y1, x2, y2 ] | |
# 'lines' is a list of all points coordinate pairs of all edges | |
lines = [] | |
hasXMin = False | |
hasYMin = False | |
hasXMax = False | |
hasYMax = False | |
for edge in edges: | |
if edge[ 1 ] >= 0 and edge[ 2 ] >= 0: # two vertices | |
[ x1, y1, x2, y2 ] = clip_line( c.vertices[ edge[ 1 ] ][ 0 ], c.vertices[ edge[ 1 ] ][ 1 ], c.vertices[ edge[ 2 ] ][ 0 ], c.vertices[ edge[ 2 ] ][ 1 ], width, height, exX, exY ) | |
elif edge[ 1 ] >= 0: # only one vertex | |
if c.lines[ edge[ 0 ] ][ 1 ] == 0: # vertical line | |
xtemp = c.lines[ edge[ 0 ] ][ 2 ] / c.lines[ edge[ 0 ] ][ 0 ] | |
if c.vertices[ edge[ 1 ] ][ 1 ] > ( height + exY ) / 2: | |
ytemp = height + exY | |
else: | |
ytemp = 0 - exX | |
else: | |
xtemp = width + exX | |
ytemp = ( c.lines[ edge[ 0 ] ][ 2 ] - ( width + exX ) * c.lines[ edge[ 0 ] ][ 0 ] ) / c.lines[ edge[ 0 ] ][ 1 ] | |
[ x1, y1, x2, y2 ] = clip_line( c.vertices[ edge[ 1 ] ][ 0 ], c.vertices[ edge[ 1 ] ][ 1 ], xtemp, ytemp, width, height, exX, exY ) | |
elif edge[ 2 ] >= 0: # only one vertex | |
if c.lines[ edge[ 0 ] ][ 1 ] == 0: # vertical line | |
xtemp = c.lines[ edge[ 0 ] ][ 2 ] / c.lines[ edge[ 0 ] ][ 0 ] | |
if c.vertices[ edge[ 2 ] ][ 1 ] > ( height + exY ) / 2: | |
ytemp = height + exY | |
else: | |
ytemp = 0.0 - exY | |
else: | |
xtemp = 0.0 - exX | |
ytemp = c.lines[ edge[ 0 ] ][ 2 ] / c.lines[ edge[ 0 ] ][ 1 ] | |
[ x1, y1, x2, y2 ] = clip_line( xtemp, ytemp, c.vertices[ edge[ 2 ] ][ 0 ], c.vertices[ edge[ 2 ] ][ 1 ], width, height, exX, exY ) | |
if x1 or x2 or y1 or y2: | |
lines.append( ( x1 + extent["xmin"], y1 + extent["ymin"] ) ) | |
lines.append( ( x2 + extent["xmin"], y2 + extent["ymin"] ) ) | |
if 0 - exX in ( x1, x2 ): | |
hasXMin = True | |
if 0 - exY in ( y1, y2 ): | |
hasYMin = True | |
if height + exY in ( y1, y2 ): | |
hasYMax = True | |
if width + exX in ( x1, x2 ): | |
hasXMax = True | |
if hasXMin: | |
if hasYMax: | |
lines.append( ( extent["xmin"] - exX, height + extent["ymin"] + exY ) ) | |
if hasYMin: | |
lines.append( ( extent["xmin"] - exX, extent["ymin"] - exY ) ) | |
if hasXMax: | |
if hasYMax: | |
lines.append( ( width + extent["xmin"] + exX, height + extent["ymin"] + exY ) ) | |
if hasYMin: | |
lines.append( ( width + extent["xmin"] + exX, extent["ymin"] - exY ) ) | |
return lines | |
def lines_as_wkt(lines): | |
if lines: | |
multipoint_wkt = '' | |
for line in lines: | |
multipoint_wkt += '%s %s,' % (line[0],line[1]) | |
return "MULTIPOINT(%s)" % multipoint_wkt[:-1] | |
else: | |
return None | |
pts = [] | |
c=Context() | |
# table_name text,table_key text,geom_col text) | |
rv = plpy.execute("SELECT ST_SRID(%s) as srid FROM %s" % (geom_col, table_name), 1) | |
srid = rv[0]['srid'] | |
if srid <= 0: | |
srid = -1 | |
# calculate extent | |
extent = {} | |
rv = plpy.execute("SELECT ST_SetSRID(ST_extent(%s), %i) as extent FROM %s" % (geom_col, srid, table_name), 1) | |
extentWKB = rv[0]['extent'] | |
rv = plpy.execute("SELECT ST_XMin('%s'::geometry), ST_XMax('%s'::geometry), ST_YMin('%s'::geometry), ST_YMax('%s'::geometry)" % (extentWKB,extentWKB,extentWKB,extentWKB)) | |
extent["xmin"] = rv[0]["st_xmin"] | |
extent["xmax"] = rv[0]["st_xmax"] | |
extent["ymin"] = rv[0]["st_ymin"] | |
extent["ymax"] = rv[0]["st_ymax"] | |
width = extent["xmax"] - extent["xmin"] | |
height = extent["ymax"] - extent["ymin"] | |
plpy.debug("got srid: %i" % srid) | |
plpy.debug("got extent: %s" % extent) | |
plpy.debug("got width: %s" % width) | |
plpy.debug("got height: %s" % height) | |
# we need to use distinct, because the code barfs if we have duplicate points | |
for row in plpy.execute("SELECT DISTINCT st_x(%s) as x, st_y(%s) as y FROM %s" % (geom_col, geom_col, table_name)): | |
pts.append(Site(row["x"] - extent["xmin"],row["y"] - extent["ymin"])) # note reative coordinates | |
# do the real work | |
sl = SiteList(pts) | |
voronoi(sl,c) | |
for site, edges in c.polygons.iteritems(): | |
# trim the extracted polygons to the extent of the input points | |
lines = clip_voronoi( edges, c, width, height, extent, 0, 0 ) | |
lines_wkt = lines_as_wkt(lines) | |
if lines_wkt is not None: | |
rv = plpy.execute("SELECT ST_ConvexHull(ST_MPointFromText('%s',%i)) AS the_geom" % (lines_wkt,srid)) | |
yield (site+1, rv[0]['the_geom']) | |
$$ LANGUAGE plpythonu; | |
CREATE OR REPLACE FUNCTION voronoi(table_name text) returns SETOF record as $$ | |
SELECT * from voronoi($1, 'the_geom') as (id integer,the_geom geometry); | |
$$ LANGUAGE SQL; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment